2023年六年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)_第1頁(yè)
2023年六年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)_第2頁(yè)
2023年六年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)_第3頁(yè)
2023年六年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)_第4頁(yè)
2023年六年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第一章扇形記錄圖

記錄圖:條形記錄圖、折線記錄圖、扇形記錄圖

條形記錄圖折線記錄圖扇形記錄圖

特用一個(gè)單位長(zhǎng)度表達(dá)一定的數(shù)量用整個(gè)圓面積表達(dá)總數(shù),用圓內(nèi)的

用直條的長(zhǎng)短表達(dá)數(shù)量的多少用折線起伏表達(dá)扇形面積表達(dá)各部分占總數(shù)的百分

點(diǎn)數(shù)量的增減變化數(shù)

從圖中能清楚地從圖中能清楚地看出各部分與總數(shù)

從圖中能清楚地看出各數(shù)量看出數(shù)量增減變的比例,以及部分與部分之間的關(guān)系

的多少,便于互相比較化的情況,也能

看出數(shù)量的多少

二、扇形記錄圖

(-)會(huì)讀取扇形記錄圖

從扇形記錄圖中獲取信息的方法:先跟整體作比較,看一看各部分占整體的比例是多少,再把各部分作比較看一

看各部分誰(shuí)占的比例大,在此基礎(chǔ)上,仔細(xì)分析得出結(jié)論。

(二)會(huì)計(jì)算扇形記錄圖中的分量和總量

I、根據(jù)圖中給出的總量和分量占總量的比例,求分量,用總量X分率=分率相應(yīng)的量

2、根據(jù)圖中給出的分量和分量占總量的比例,求總量,用分量?相應(yīng)的分率=總量

三、選擇合適的記錄圖

要■想清楚地看出各要反映數(shù)量的增減要想直觀?址看出數(shù)

部分?jǐn)?shù)量與總數(shù)量

變化情況,可以選量的多少',可以選

之間的關(guān)系,可以擇條形統(tǒng)計(jì)圖

選擇扇形統(tǒng)計(jì)圖。擇折線統(tǒng)計(jì)圖。

單元規(guī)定:

1、知道扇形記錄圖的整個(gè)圓表達(dá)什么,能從圖中看出各部分占整體的百分之幾,并推算出它們之間的關(guān)系。

2、能根據(jù)所給的數(shù)據(jù),合理的計(jì)算出各部分量或總量分別是多少。

3、知道三類不同記錄圖的特點(diǎn)級(jí)作用,能根據(jù)所給數(shù)據(jù)的特點(diǎn)和不同的需求選擇適當(dāng)?shù)挠涗泩D描述數(shù)據(jù)。

例題:

1、下圖是某校六年級(jí)男生最喜歡的球類運(yùn)動(dòng)情況記錄圖。

(1)、最喜歡籃球的人數(shù)占總?cè)藬?shù)的百分之幾?

(2)、最喜歡羽毛球的人數(shù)比喜歡排球的人數(shù)多15人,該校六年級(jí)共有男生多少人?

(3)、你還能提出什么問題?

籃球

那球

分析:這是一個(gè)扇形記錄圖,它表達(dá)的是六年級(jí)男生最喜歡的球類運(yùn)動(dòng)占總?cè)藬?shù)的比例。整個(gè)圓表達(dá)六年級(jí)男生的

總?cè)藬?shù)這個(gè)單位“1”,各個(gè)扇形表達(dá)最喜歡的球類運(yùn)動(dòng)的人數(shù)分別占總?cè)藬?shù)的比例。(1)求籃球占百分之幾,可

以用單位“1”分別減去其他的分率,(2)求六年級(jí)共有男生多少人?可以用多的15人除以相應(yīng)的分率即(2

0%-10%)(3)還能提出什么問題?這是一個(gè)開放性的問題,可以提某個(gè)項(xiàng)目有多少人,也可以提某兩個(gè)項(xiàng)目

相差或一共有多少人?

列式:(1)、1-20%-40%-10%=30%

(2),15(20%-10%)=15^-10%=150(人)

(3)、喜歡羽毛球的男生有多少人?

第二章圓柱和圓錐

圓柱上、下兩個(gè)面叫做圓柱的底面。

圓柱上、下兩個(gè)面是完全相同的圓

力圍成圓柱的曲面叫做圓柱的側(cè)面。

圓柱兩個(gè)底面之間的距離叫做圓柱的

高。圓柱的高有無(wú)數(shù)條。

一、圓柱和圓錐的結(jié)識(shí)

頂點(diǎn)(圓錐的底面是一個(gè)圓,圓錐的側(cè)面是一個(gè)曲面。從圓錐的頂點(diǎn)到底

面圓心的距離是圓錐的高,高只有一條)

名稱相同點(diǎn)不同點(diǎn)

底面?zhèn)让娴酌鎮(zhèn)让?/p>

圓柱圓曲面2個(gè)無(wú)數(shù)條

圓錐1個(gè)1條

注:小學(xué)階段學(xué)的圓柱和圓錐分別是直圓柱和直圓錐,直圓柱的上下粗細(xì)同樣;直圓錐沿它的高垂直

于底面進(jìn)行切割,切面是兩個(gè)完全相同的等腰三角形。

觀測(cè)圓柱時(shí)從正面和側(cè)面看到的形狀同樣,都是長(zhǎng)方形,上下邊是圓柱的底面直徑,左右邊是

圓柱的的高;觀測(cè)圓錐時(shí)從正面和側(cè)面看到的形狀同樣,都是三角形,下邊是圓錐的底面直徑,左右邊

是圓錐的母線。

規(guī)定:掌握?qǐng)A柱體和圓錐體的特點(diǎn),能作出圓柱、圓錐的高,理解沿長(zhǎng)方形的一條邊旋轉(zhuǎn)一周得到的

是一個(gè)圓柱體,沿直角三角形的一條直角邊旋轉(zhuǎn)一周得到的是圓錐體。

二、圓柱的表面積

圓柱的表面積指的是圓柱的側(cè)面與兩個(gè)底面積的和。求圓柱的表面積就是側(cè)面積與兩個(gè)底面積的和

1、圓:

圓的周長(zhǎng)=疝=2TIR

圓的面積=兀/

例題:一個(gè)圓的半徑是4厘米,它的周長(zhǎng)和面積分別是多少?

列式:C=2兀R=7tX4X2=25.12(厘米)

S=7ir2=7rX4X4=50.24(平方厘米)

提醒:圓的面積及周長(zhǎng)計(jì)算是圓柱表面積計(jì)算的基礎(chǔ)

2、圓柱側(cè)面積

圓柱的側(cè)面積指的是圓柱曲面的面積

把一個(gè)圓柱沿高剪開得到的是一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)等于圓柱的底面周長(zhǎng),長(zhǎng)方形的寬等于圓柱的高,

長(zhǎng)方形的面積就是圓柱的側(cè)面積,長(zhǎng)方形的面積=Kx寬,所以圓柱的側(cè)面積=底面周長(zhǎng)x高。

同樣把一個(gè)圓柱的側(cè)面沿斜邊剪開得到的是一個(gè)平行四邊形,這個(gè)平行四邊形的底等于圓柱的底面周長(zhǎng),平行

四邊形的高等于圓柱的高,平行四邊形的面積就是圓柱的側(cè)面積,所以圓柱的側(cè)面積=底面周長(zhǎng)x高。

S側(cè)=7rdh或S側(cè)=2;rrh

3、圓柱的表面積

S表=5側(cè)+2S底

=2?!rh+27rr2

規(guī)定:能運(yùn)用公式純熟的計(jì)算圓柱體物體的側(cè)面積和表面積,能根據(jù)實(shí)際情況靈活運(yùn)用公式解決實(shí)際問題

4、例題分析

1、練p5第5題

S側(cè)=>dh=287rX18=l582.56(平方厘米)

(1)28X4+18X4=184(厘米)184+25=209(厘米)

分析:扎蛋糕盒要用多少彩繩,就是求4個(gè)高和4個(gè)底面直徑以及打結(jié)處25厘米彩繩的總長(zhǎng),做題

時(shí)要結(jié)合圖意。

2、練p6第5題

壓路機(jī)的滾筒是一個(gè)圓柱,長(zhǎng)1.8米,底面直徑1.2米。滾筒滾動(dòng)一周能壓路面多少平方米?

分析:壓路機(jī)的滾筒滾動(dòng)一周壓路的面積是圓柱的側(cè)面積,路面的寬是滾筒的長(zhǎng),路面的長(zhǎng)是滾筒

的底面周長(zhǎng)。

壓路面積=1.2兀XI.8=2.1671=6.7872(平方米)

延伸:假如從一條馬路的一端壓倒另一端,共滾動(dòng)了350周。這條馬路有多長(zhǎng)?壓過的路面有多

少平方米?

分析:滾筒滾動(dòng)一周壓路的長(zhǎng)度就是滾筒的底面周長(zhǎng),滾筒共滾動(dòng)350周,長(zhǎng)度就是底面周長(zhǎng)乘

350o

馬路的長(zhǎng)度=1271X35=4203.14(米)

馬路的面積=4203.14X1,8=7565.652(平方米)

3、一個(gè)圓柱高8厘米,截下2厘米長(zhǎng)的一段后,圓柱的表面積減少了25.12平方厘米。求本來圓

柱的表面積。

分析:畫圖可知,圓柱體表面積減少的部分就是截下2厘米長(zhǎng)的圓柱的側(cè)面積,由截下的側(cè)面積和

長(zhǎng)2厘米可求出圓柱的底面直徑,從而進(jìn)一步求出圓柱體的表面積

(()()

?厘米

列式:25.12—24■兀=4(厘米)

S底:Ji><4X4=16”(平方厘米)S側(cè):nX4X2X8=64n(平方厘米)

S表:64n+l6JTX2=96況=301.44(平方厘米)

4、有一根圓柱形木棒,直徑是10厘米,高是20厘米。沿著直徑鋸成相等的兩塊,求每塊的表面

積是多少?

由圖可知:鋸開后的每半塊圖形涉及4個(gè)面(上下兩個(gè)半圓,一個(gè)長(zhǎng)方形的截面和半個(gè)側(cè)面)

列式:10X20=200(平方厘米)nX5X5=25口(平方厘米)nX10X20+2=100Ji(平

方厘米)

200+25n+100n=592.5(平方厘米)

延伸:圓柱切開后,會(huì)增長(zhǎng)兩個(gè)橫截面的面積,沿底面直徑切增長(zhǎng)的是兩個(gè)長(zhǎng)方形,沿底面圓切增長(zhǎng)的是兩個(gè)圓面。

5、一個(gè)沒有蓋的圓柱形水桶,高24厘米,底面直徑是20厘米,做兩個(gè)這樣的鐵皮水桶至少需要

鐵皮多少平方厘米(接口處不計(jì),得數(shù)保存整百平方厘米)

分析:沒有蓋的圓柱形水桶,只有兩個(gè)面一個(gè)側(cè)面和一個(gè)下底面。此外在用材料做物體選擇近似數(shù)

時(shí)應(yīng)用進(jìn)一法。

列式:S側(cè)=nX24X20=480"(平方厘米)S底:nX10X10=100”(平方厘米)

480Ji+100口=580五=1821.2(平方厘米)1821.2X2=3642.2心3700(平方厘米)

備注:煙囪、水管等圓柱體只有一個(gè)側(cè)面,無(wú)蓋水桶只有側(cè)面和一個(gè)底面。在求圓柱表面積的時(shí)候,并不是所有

的圓柱都包含一個(gè)側(cè)面和兩個(gè)底面,要根據(jù)物體的實(shí)際情況,有針對(duì)性的進(jìn)行解決。

三、圓柱的體積

一個(gè)圓柱所占空間的大小,叫作圓柱的體積

長(zhǎng)方體體積=底面積X高

圓柱體積=底面積X高

已知底面積和高,可用公式:V=sh已知底面半徑和高,可用公式:V=jrr2h

己知底面直徑和高,可用公式:V=jt(-)2h己知底面周長(zhǎng)和高,可用公式:v=n(—)2h

22萬(wàn)

四、圓錐的體積

體積公式

一個(gè)圓錐所占空間的大小,叫作圓錐的體積

圓錐的體積是與它等底等高的圓柱體積的L

3

圓錐的體積=底面積X高X」,即:V=-sh

33

規(guī)定:掌握?qǐng)A柱、圓錐體積公式的推導(dǎo)過程,能靈活的運(yùn)用圓柱、圓錐的體積公式解決相關(guān)實(shí)際

問題。

(-)習(xí)題講解

1、練p9第4題

P9.把一個(gè)長(zhǎng)、寬、高分別是10CM、8cm>9cm的長(zhǎng)方體削成一個(gè)最大的圓柱,削去部分的體積

是多少立方厘米?

分析:削成的圓柱共有三種情況:第一種以長(zhǎng)方體上下面為圓柱底面即r=4,h=9第二種以長(zhǎng)方體左

右面為圓柱底面即r=4.5,h=8,第三種以長(zhǎng)方體前后面為圓柱底面即r=4,h=1Oo很明顯第三種情

況的體積大于第一種,因而只要比較第二種和第三種情況。

列式:

兀X4.5X4.5X8=162元(立方厘米)兀X4X4X10=160兀(立方厘米)

162n>160兀8X9X10—162兀=211.32(立方厘米)

2、練plO第4題

某兒童玩具廠生產(chǎn)的積木中,有一種如右圖形狀的積木,做這樣的一個(gè)積木,要用木料多少立方

厘米?假如在積木的表面涂上油漆,涂油漆部分的面積有多少平方厘米?

分析:這個(gè)積木是圓柱形的一半,它的高是10厘米,底面直徑是5厘米。求要用多少立方厘米事

實(shí)上是在求它的體積,也就是圓柱體積的一半;求涂油漆部分的面積有多少平方厘米,要弄清共涂

了幾個(gè)面,圓柱體的一半共有四個(gè)面即兩個(gè)半圓形的底面,半個(gè)側(cè)面和一個(gè)長(zhǎng)方形的橫截面。

列式:兀X2.5X2.5X10=62.5兀(立方厘米)62.5n4-2=98.125(立方厘米)

5兀X104-2=25兀(平方厘米)TtX2.5X2.5=6.25兀(平方厘米)

5X10=50(平方厘米)25兀+6.25兀+50=148.125(平方厘米)

3、練P15第6題

把一個(gè)圓錐沿著高切開,得到兩個(gè)如下圖所示的物體,截面的面積是18平方厘米。假如本來圓錐的高

是6厘米,它的底面積是多少平方厘米?體積是多少立方厘米?

分析:把圓錐沿高向下切開,得到的橫截面是三角形,這個(gè)三角形的底就是圓錐的底,三角形的高就

是圓錐的高。

列式;18X2+6=6(cm)64-2=3(cm)兀X3X3X6X』=56.52(立方厘米)

3

4、一個(gè)用塑料薄膜覆蓋的蔬菜大棚,長(zhǎng)15米,截面是一個(gè)半徑2米的半圓形。

(1)搭建這個(gè)大棚大約要用多少平方米塑料薄膜?

(2)大棚內(nèi)的空間大約有多大?

分析:塑料薄膜蔬菜大棚是一個(gè)典型的圓柱體的一半,求覆蓋的塑料薄膜有多少,就是求半個(gè)側(cè)面

和兩個(gè)半圓的面積。求大棚的空間就是求圓柱體體積的一半。

列式:兩個(gè)半圓面積:nX2X2=4n(平方厘米)半個(gè)側(cè)面的面積nX15X4+2=30九(平方厘米)

4n+30n=34Ji=106.76(平方厘米)

4JiX154-2=30JT=94.2(立方厘米)

5、一個(gè)圓錐形沙堆,底面積是24平方米,高是1.2米。用這堆沙子去填一個(gè)長(zhǎng)7.5米、寬4

米的長(zhǎng)方形沙坑,沙坑的沙子厚度是多少厘米?

分析:這是一道典型的等積變形的習(xí)題,把圓錐體沙堆鋪在沙坑中,沙子的體積不變,形狀由圓錐體

變成了長(zhǎng)方體。對(duì)于這樣的習(xí)題我們通常用方程解答。

列式:7.5X4Xx=24X1.2X10.32米=32厘米

3

x=0.32

(三)拓展延伸:

1、把一個(gè)長(zhǎng)方形沿寬3cm的邊旋轉(zhuǎn)一周,旋轉(zhuǎn)后得到黃色圖形的體積是多少?紅色圖形的體積是

多少?4cm

4r/A

分析:把長(zhǎng)方形旋轉(zhuǎn)一周得到的是一個(gè)圓柱體,直角三角形沿直角邊旋轉(zhuǎn)一周

得到的是一個(gè)圓錐體,用圓柱體的體積減去紅色圓錐體的體積就是黃色圖形的體積。

列式:

圓柱體積:兀><4X4X3=48兀(立方厘米)

紅色圓錐的體積:兀X4X4X3X'=16兀(立方厘米)

3

黃色圖形的體積:48兀-16兀=32兀(立方厘米)

2、在一個(gè)長(zhǎng)3分米,寬2分米,高1分米的紙箱中,放入地面直徑是厘米,高是5厘米的圓柱形易拉

罐,一共能放多少罐?

分析:在長(zhǎng)方體紙箱中放入易拉罐,先要計(jì)算出一排能放多少罐,再算出一層有幾排?這幾排一共有多

少罐?最后算出一共能放多少罐?

列式:

一排放的灌數(shù):30+6=5(罐)

一層能放的排數(shù):20+6=3(行)...2

一層放的灌數(shù):3義5=15(罐)

紙箱能放的層數(shù):10+5=2(層)

一共能放的灌數(shù):15X2=30(罐)

3、如下圖在一張長(zhǎng)20.7cm的長(zhǎng)方形紙中做一個(gè)圓柱體,這個(gè)圓柱體的體積是多少立方米?

O

0-------------------------

20.7cm

分析:這個(gè)長(zhǎng)方形的長(zhǎng)等于圓柱的底面周長(zhǎng)+直徑,即20.7=d+7rd,長(zhǎng)方形的寬就是這個(gè)

圓柱的高,即2d..

列式:(d+jtd)=20.7d=20.74-4.14=5兀X5X5X(5+5)=785(立方厘米

第三章選擇合適的策略解決問題

1、基本策略:從條件想起(綜合法),從問題想起(分析法)

例:運(yùn)來香蕉I80公斤'運(yùn)來蘋果是香蕉的7'運(yùn)來的梨比蘋果的3多1。公斤'運(yùn)來梨多少公斤?

香蕉180公斤從

求出蘋果的重量

求出梨的重量

列式:180x1x1+10=20(公斤)

63

回顧:從條件想起的策略是看題目中給了哪些條件,由其中的兩個(gè)條件可解決什么問題,然后把解

決的新問題當(dāng)作已知條件和題中未用的條件再組合最總解決問題。

例:運(yùn)來香蕉180公斤,運(yùn)來蘋果是香蕉的I,運(yùn)來的梨比蘋果的!多10公斤,運(yùn)來梨多少公斤?

要想求出梨的重量

由梨比蘋果的:多1°公斤題

由蘋果是香蕉的L

6

列式:180義1x1+10=20(公斤)

63

2、常見的策略:列表、畫圖、一一列舉、轉(zhuǎn)化、假設(shè)

(1)列表:

當(dāng)題目中的信息量比較大,不容易找到相應(yīng)的量從而不便于分析找到數(shù)量關(guān)系式時(shí),可運(yùn)用列

表的策略。列表時(shí)要注意相應(yīng)的量列在同一列或同一行中,以便于找出數(shù)量關(guān)系式。

(2)畫圖:

當(dāng)題目中的數(shù)量關(guān)系比較復(fù)雜,不容易看清題目中的數(shù)量關(guān)系式時(shí),可運(yùn)用畫圖的策略。畫圖

時(shí)應(yīng)在圖中標(biāo)清條件和問題,應(yīng)依據(jù)習(xí)題畫線段圖或畫示意圖。

(3)一一列舉

當(dāng)題目中出現(xiàn)的結(jié)果是多樣的,可以采用一一列舉的策略把所以的結(jié)果呈現(xiàn)出來。列舉是要注

意做到有序、不反復(fù)。

(4)轉(zhuǎn)化

把未知的轉(zhuǎn)化為已學(xué)過的知識(shí),是轉(zhuǎn)化策略的精髓所在。如以前學(xué)的異分母分?jǐn)?shù)加減法、小數(shù)

加減法;平行四邊形、三角形等圖形面積公式的推導(dǎo)…

(5)假設(shè)(替換)

例1、小明把720毫升果汁倒入6個(gè)相同的小杯和1個(gè)大杯,正好都倒?jié)M。大杯的容量是小杯

3倍。每個(gè)小杯和大杯的容量各是多少毫升?

1X3=3(個(gè))6+3=9(個(gè))720+9=80(毫升)80X3=240(毫升)

解法二:

6+3=2(個(gè))2+1=3(個(gè))720+3=240(毫升)240+3=80(毫升)

檢查:

240+80X6=720(毫升)2404-80=3

答:…

例2、小明把720毫升果汁倒入6個(gè)相同的小杯和1個(gè)大杯,正好都倒?jié)M。大比小杯多裝160

毫升。每個(gè)小杯和大杯的容量各是多少毫升?

思緒一:所有當(dāng)作小杯

<■■■■■■>

總量減少了160毫升

720-160=560(毫升)560+7=80(毫升)80X3=240(毫升)

解法二:

720+160X6=1680(個(gè))1680+7=240(毫升)240+3=80(毫升)

檢查:

240+80X6=720(毫升)240-80=160答:…

比較區(qū)別:例1大杯和小杯成倍數(shù)關(guān)系,例2大杯和小杯成相差關(guān)系。例1把大杯當(dāng)作小杯或小

杯當(dāng)作大杯,杯子的數(shù)量發(fā)生了變化,但總量不變。例2把大杯當(dāng)作小杯或小杯當(dāng)作大杯,總量發(fā)生

了變化,但杯子的數(shù)量不變。

(6)選擇策略解決問題

例題:全班42人去公園劃船,一共租用了10只船。每只大船坐5人,每只小船坐3人。租用大船

和小船各有幾只?

方法一:

假設(shè)再調(diào)整:

大船只數(shù)小船只數(shù)總?cè)藬?shù)與42人比較調(diào)整

555X5+5X3=40少了2人小船改大船

646X5+4X3=42剛好24-(5-3)=1

方法二:列舉

大船只數(shù)小船只數(shù)總?cè)藬?shù)與42人比較

10010X5=50多了6人

919X5+1X3=48多了6人

828X5+2X3=46多了4人

737X5+3X3=44多了2人

646X5+4X3=42剛好

方法三:

畫圖:(略)

檢查:6+4=10(條)6X5+4X3=42(A)

提醒:在使用不同的策略解題時(shí),你認(rèn)為哪種策略,使用起來最有效、最得心應(yīng)手,你就使用這樣

的策略,此外我們還可以綜合運(yùn)用幾種策略,讓解題更簡(jiǎn)便。做完后為了保證準(zhǔn)確一定要檢查。

2、在12張球桌上同時(shí)進(jìn)行乒乓球比賽,雙打的比單打的多6人。進(jìn)行雙打和單打比賽的乒乓球桌

的各有幾張?

分析:把一個(gè)雙打調(diào)整為一個(gè)單打雙打人數(shù)將和單打人數(shù)相差6人,

假設(shè)再調(diào)整:

雙打球桌數(shù)單打球桌數(shù)相差人數(shù)與6人比較調(diào)整

666X4-6X2=12少了6人雙打改單打

575X4-7X4=6剛好64-(12-6)=1

3、練pl8第4題

王小江有三本集郵冊(cè),第三本的郵票枚數(shù)是第一本的2/3,是第二本的4/7.假如第一本的郵

票比第二本少8枚,這三本郵票各有多少枚?

方法一:(轉(zhuǎn)化法)

由題意可知

第三本郵票枚數(shù):第一本郵票枚數(shù)=2:3

第三本郵票枚數(shù):第二本郵票枚數(shù)=4:7

第三本郵票枚數(shù):第二本郵票枚數(shù):第一本郵票枚數(shù)=4:6:7

列式:

84-(7-6)=8(枚)4X8=32(枚)6X8=48(枚)7X8=56(枚)

方法二:(假設(shè)法)

由習(xí)題中第三本的郵票枚數(shù)是第一本的2/3,是第二本的4/7.,設(shè)第三本郵票的枚數(shù)為X,則

第一本有3/2x,第二本有7/4X.

列式:7/4x-3/2x=8

4、練p21第7題

一種圓珠筆有3支裝和5支裝兩種規(guī)格。李老師要買38支圓珠筆,可以分別購(gòu)買兩種規(guī)格的各幾盒?

一共有幾種不同的選擇方法?在下表中列舉找到答案。

分析:規(guī)定買的3支裝和5支裝的應(yīng)是整盒數(shù),

5支裝的盒數(shù)147

3支裝的盒數(shù)1161

38

補(bǔ)充相關(guān)例題

(1)

王阿姨在百貨商店花385元買上衣、褲子和裙子各一件。已知上衣比褲子貴58元,褲子比裙

子貴24元。你能算出上衣、褲子和裙子每件各要多少元嗎?

裙子

褲子

上衣

列式:

358-(58+24)-24=252(元)252+3=84(元)

84+24=108(元)108+58=166(元)

分析:相差關(guān)系的畫線段圖時(shí),一般先畫數(shù)量少的再畫數(shù)量多的,解題時(shí)先假設(shè)三件都是裙子,這

樣總價(jià)就要連續(xù)減去24和82。用變化后的總價(jià)除以3就得到一件裙子的價(jià)錢。

(2)6梨?zhèn)€的價(jià)錢可以買4個(gè)芒果,6個(gè)芒果的價(jià)錢可以買4個(gè)蘋果。18個(gè)梨的價(jià)錢可以買多少

個(gè)蘋果?

分析:6個(gè)梨能買4個(gè)芒果,那么18個(gè)梨就應(yīng)當(dāng)能買12個(gè)芒果。

6個(gè)芒果的價(jià)錢可以買4個(gè)蘋果,那么12個(gè)芒果就應(yīng)當(dāng)能買8個(gè)蘋果。

所以18個(gè)梨的價(jià)錢可以買12個(gè)蘋果。

列式:

184-6=33X4=12(個(gè))124-6=22X4=8(個(gè))

第四章:比例

第一節(jié):圖形的放大和縮?。?/p>

放大或縮小前后的圖形與本來的圖形相比,大小變了,形狀沒有變。

把一個(gè)圖形按a:1(a21)的比放大,就是指放大后的圖形的邊長(zhǎng)是本來的a倍。

把一個(gè)圖形按1:a(a^l)的比縮小,就是指縮小后的圖形的邊長(zhǎng)是本來的

a

例題分析:

按2:1的比畫出三角形放大

后的圖形

按1:2的比畫出梯形縮小

后的圖形

提醒:把直角三角形放大或縮小,通常放大或縮小兩條直角邊,把梯形放大或縮小通常放大或縮小

上底、下底和高。

第二節(jié)比例的意義及基本性質(zhì)

意義:表達(dá)兩個(gè)比相等的式子叫做比例。組成比例的四個(gè)數(shù)叫做比例的項(xiàng),中間的兩項(xiàng)叫比例的內(nèi)

項(xiàng),兩端的兩項(xiàng)叫做比例的外項(xiàng)。

基本性質(zhì):兩個(gè)外項(xiàng)的積等于兩個(gè)內(nèi)項(xiàng)的積

A:B=C:DAD=BC

|加|

外項(xiàng)

假如比例是分?jǐn)?shù)形式,等號(hào)兩端的分子和分母分別交叉相乘,它們的積相等

判斷兩個(gè)比是否成比例的方法:第一種求出兩個(gè)比的比值,假如比值相等,就可以組成比,第

二種方法看內(nèi)項(xiàng)積是否等于外項(xiàng)積。

比與比例的區(qū)別

意義各部分的名稱

比表達(dá)兩個(gè)數(shù)相除前項(xiàng):后項(xiàng)

比例表達(dá)兩個(gè)比相等的式子叫做比比例兩端的是外項(xiàng),中間的是內(nèi)項(xiàng)

例題分析:

1、4x=3y,那么x:y=(3):(4)

(14

@=那么aX(7)=bX(4)

b7

提醒:填空時(shí)看清哪兩個(gè)數(shù)屬于內(nèi)項(xiàng)和外項(xiàng),然后依據(jù)比例的基本性質(zhì)填空

2、在比例4:15=8:30中,假如第一個(gè)比的后項(xiàng)增長(zhǎng)5,那么第二個(gè)比的前項(xiàng)應(yīng)當(dāng)如何變化才干

使才干是比例成立。

分析:第一個(gè)比的后項(xiàng)增長(zhǎng)5,這時(shí)比值是4:20=工,要想比例成立那么第二個(gè)比的比值也應(yīng)當(dāng)是L

列式:30xl=6,8-6=2,所以第二個(gè)比的前項(xiàng)應(yīng)當(dāng)減少2.

第三節(jié):解比例

求比例中的未知項(xiàng)叫作解比例

X:0.5=28:14

分析:在比例中兩個(gè)內(nèi)項(xiàng)積等于外項(xiàng)積,因此得到14x=28X0.5

解14x=28X0.5……依據(jù)比例的基本性質(zhì)

14x=14

X=1

空—二

獲一記

解3.6x=2.4X0.6……依據(jù)比例的基本性質(zhì)

3.6x=1.44

X=0.4

提醒:解比例一方面運(yùn)用比例的基本性質(zhì)(分清內(nèi)項(xiàng)、外項(xiàng))寫出內(nèi)項(xiàng)積等于外項(xiàng)積的方程式,

然后在解等式,最后規(guī)定驗(yàn)算。

第四節(jié)比例尺的意義

圖上距離與實(shí)際距離的比叫作比例尺,注意單位統(tǒng)一

比例尺的前項(xiàng)表達(dá)圖上距離,后項(xiàng)表達(dá)實(shí)際距離,為了計(jì)算方便,通常寫成前項(xiàng)后項(xiàng)是1的

比。

比例尺的形式:數(shù)值比例尺、線段比例尺

r「丫丁也表達(dá)圖上1厘米相稱于實(shí)際io米,

化成數(shù)值比例尺1厘米:10米=1:1000

將線段比例尺化成數(shù)值比例尺要特別注意單位的統(tǒng)一。

走際距離=圖上距離小比例尺或?qū)嶋H距離=圖上距離義1厘米表達(dá)的實(shí)際距離

圖上距離=實(shí)際距離X比例尺或圖上距離=實(shí)際距離+XI厘米表達(dá)的實(shí)際距離

規(guī)定:理解比例尺的意義,能根據(jù)比例尺的意義靈活地求出圖上距離和實(shí)際距離

例題:

在比例尺是1:5000000的地圖上量得上海到北京的距離是21厘米,上海到北京的實(shí)際距

離大約是多少千米。

依據(jù)比例尺=圖上距離:實(shí)際距離列比例解答

解:設(shè)上海到北京的實(shí)際距離大約是x厘米。

211

T-5000000

x=

厘米=1050千米

一座廠房,實(shí)際長(zhǎng)100米,假如把它畫在比例尺是1:100的圖紙上,應(yīng)畫幾厘米長(zhǎng)?

100米=10000厘米

解:設(shè)應(yīng)畫X厘米長(zhǎng)

x1

ioooo-lo66

X=10

提醒:求圖上距離或?qū)嶋H距離可依據(jù)比例尺=圖上距離:實(shí)際距離列出比例進(jìn)行解答,在列式是

應(yīng)注意單位統(tǒng)一。

根據(jù)比例尺畫圖

用比例尺畫圖時(shí),先跟據(jù)圖上距離=實(shí)際距離X比例尺求出圖上距離,然后根據(jù)上北下南,左西

右東的方位辨別出要畫的地點(diǎn)在圖上的位置。

例題:一學(xué)?;▔癁橛^測(cè)點(diǎn),操場(chǎng)在正北方向10米處,科技館在正西方向15米處,按給定的比例

尺畫圖(提醒

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論