版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
散熱器擴散熱阻的計算散熱器擴散熱阻的計算Accident?Considerthescenariowhereadesignerwishestoincorporateanewlydevelopeddeviceintoasystemandsoonlearnsthataheatsinkisneededtocoolthedevice.Thedesignerfindsaratherlargeheatsinkinacatalogwhichmarginallysatisfiestherequiredthermalcriteria.Duetootherconsiderations,suchasfannoiseandcostconstraints,anattempttouseasmallerheatsinkprovedfutile,andsothelargerheatsinkwasacceptedintothedesign.Aprototypewasmadewhich,unfortunately,burned-outduringtheinitialvalidationtest,theproductmissedthenarrowintroductiontime,andtheprojectwascanceled.WhatwentwrongThereasonscouldhavebeenmulti-fold.But,underthisscenario,themainculpritcouldhavebeenthespreadingresistancethatwasoverlookedduringthedesignprocess.Itisveryimportantforheatsinkuserstorealizethat,unlesstheheatsinkiscustomdevelopedforaspecificapplication,thermalperformancevaluesprovidedinvendor'scatalogsrarelyaccountfortheadditionalresistancescomingfromthesizeandlocationconsiderationsofaheatsource.Itisunderstandablethatthevendorsthemselvescouldnotpossiblyknowwhatkindofdevicestheuserswillbecoolingwiththeirproducts.RIntroductionSpreadingorconstrictionresistancesexistwheneverheatflowsfromoneregiontoanotherindifferentcrosssectionalarea.Inthecaseofheatsinkapplications,thespreadingresistanceoccursinthebase-platewhenaheatsourceofasmallerfootprinfootprintareaismountedonaheatsinkwithalargerbase-platearea.Thisresultsinahigherlocaltemperatureatthelocationwheretheheatsourceisplaced.Figure1illustrateshowthesurfacetemperatureofaheatsinkbase-platewouldrespondasthesizeoftheheatsourceisprogressivelyreducedfromlefttorightwithallotherconditionsunchanged:thesmallertheheatsource,themorespreadinghastotakeplace,resultinginagreatertemperatureriseatthecenter.Inthisexample,theeffectoftheedgesurfacesoftheheatsinkisignoredandtheheatsourceisassumedtobegeneratinguniformheatflux.Incaseswherethefootprintofaheatsinkneednotbemuchlargerthanthesizeoftheheatsource,thecontributionofthespreadingresistancetotheoveralldevicetemperaturerisemaybeinsignificantandusuallyfallswithinthedesignmargin.However,inanattempttoremovemoreheatfromtoday'shighperformancedevices,alargerheatsinkisoftenusedand,consequently,theimpactofspreadingresistanceontheperformanceofaheatsinkisbecominganimportantfactorthatmustnotbeignoredinthedesignprocess.Itisnotuncommontofindinmanyhighperformance,highpowerapplicationsthatmorethanhalfthetotaltemperatureriseofaheatsinkisattributedtothespreadingresistanceinthebase-plate.Theobjectivesofthisarticleare:1)tounderstandthephysicsandparametersassociatedwithspreadingresistance2)toprovideasimpledesigncorrelationforaccuratepredictionoftheresistance3)todiscussandclarifytheconceptofspreadingresistancewithanemphasisonthepracticaluseofthecorrelationinheatsinkapplicationsThecorrelationprovidedhereinwasoriginallydevelopedinreferences1and2.Thisarticleisanextensionoftheearlierpresentation.SpreadingResistanceBeforeweproceedwiththeanalysis,letusattendtowhatthetemperaturedistributionsshowninFig.1aretellingus.Thefirstobviousone,asnotedearlier,isthatthemaximumtemperatureatthecenterincreasesastheheatsourcebecomessmaller.Anotherimportantobservationisthat,asthetemperaturerisesinthecenter,thetemperaturesalongtheedgesoftheheatsinkdecreasesimultaneously.Itcanbeshownthatthishappensinsuchawaythatthearea-averagedsurfacetemperatureoftheheatsinkbase-platehasremainedthesame.Inotherwords,theaverageheatsinkthermalperformanceisindependentofthesizeofaheatsource.Infact,aswillbeseenlater,itisalsoindependentofthelocationoftheheatsource.Thespreadingresistancecanbedeterminedfromthefollowingsetofparameters:footprintorcontactareaoftheheatsource,Asfootprintareaoftheheatsinkbase-plate,Apthicknessoftheheatsinkbase-plate,tthermalconductivityoftheheatsinkbase-plate,kaverageheatsinkthermalresistance,R0Wewillassume,forthetimebeing,thattheheatsourceiscentrallymountedonthebase-plate,andtheheatsinkiscooleduniformlyovertheexposedfinnedsurface.Thesetwoassumptionswillbeexaminedinfurtherdetail.Figure2showsatwo-dimensionalsideviewoftheheatsinkwithheat-flowlinesschematicallydrawninthebase-platewhosethicknessisgreatlyexaggerated.Atthetop,thecorrespondingsurfacetemperaturevariationacrossthecenterlineofthebase-plateisshownbythesolidline.Thedottedlinerepresentstheaveragetemperatureofthesurfacewhichis,again,independentoftheheatsourcesizeandcanbeeasilydeterminedbymultiplyingRwiththe0totalamountofheatdissipation,denotedasQ.AsindicatedinFig.2,themaximumconstrictionresistanceR,whichcaccountsforthelocaltemperatureriseovertheaveragesurfacetemperature,istheonlyadditionalquantitythatisneededfordeterminingthemaximumheatsinktemperature.Itcanbeaccuratelydeterminedfromthefollowingcorrelation.Figure2-TwodimensionalschematicviewoflocalresistanceortemperaturevariationofaheatsinkshownwithheatflowLinesNotethatthecorrelationaddressesneithertheshapeoftheheatsourcenorthatoftheheatsinkbase-plate.Itwasfoundintheearlierstudythatthiscorrelationtypicallyresultsinanaccuracyofapproximately5%overawiderangeofapplicationswithmanycombinationsofdifferentsource/sinkshapes,providedthattheaspectratiooftheshapesinvolveddoesnotexceed.Seereferences1and2forfurtherdiscussions.ExampleProblemConsideranaluminumheatsink(k=200W/mK)withbase-platedimensionsof100x100xmmthick.Accordingtothecatalog,thethermalresistanceofthisheatsinkunderagivensetofconditionsis°C/W.Findthemaximumresistanceoftheheatsinkifusedtocoola25x25mmdevice.SolutionsWithnootherspecificdescriptions,itisassumedthattheheatsourceiscentrallymounted,andthegiventhermalresistanceof°C/Wrepresentstheaverageheatsinkperformance.Fromtheproblemstatement,wesummarize:A=x=m2sA=x=m2pt=mk=200W/mKR=°C/W0Therefore,Hence,themaximumresistance,R,is:totalR=R+R=+=°C/WtotalocReadersshouldnotethefarrighttemperaturedistributioninFig.1whichistheresultofanumericalsimulationforthepresentprobleminrectangularcoordinates.EffectofSourceLocationInthefollowingtwosections,wewilllimitourexaminationtothecurrentexampleproblem.Asweshallsee,theresultofthislimitedcasestudywillallowustodrawsomegeneralyetusefulconclusions.Supposethesameheatsourceintheaboveexamplewasnotcentrallylocated,butmountedadistanceawayfromthecenter.Obviously,themaximumtemperaturewouldfurtherriseascomparedtothatfoundintheaboveexample.Figure3showsthelocalresistancescorrespondingtotwosuchcases:Figure3-Heat-sinklocalresistanceshowingtheeffectofsourcelocation:fromLtoR,heatsourceat,0)and,thefirstoneisforthecasewheretheheatsourceismountedmidwayalongtheedge,andtheother,whereitismountedononecorneroftheheatsink.Forthesetwospecialcases,themaximumspreadingresistancecanbecalculatedbyusingEq.(1)forRwithinputcparameterstandRmodifiedasshownbelow:c0RCxRAAktCRC)ccps0withwithforthefirstcase,andC=2forthesecondcase.Itistobenotedthatthisexpressionisindependentofthesourcesize.Numerically,forthecurrentproblemwitha25x25mmheatsource,itresultsinthemaximumspreadingresistancesofand°C/W,orthetotalresistancesofand°C/Wforthefirstandsecondcases,respectively.Forbothcases,itcanbeshownthattheaveragesurfaceresistancehasnotchangedfromunity.Forotherintermediatesourcelocations,numericalsimulationswerecarriedoutandaplotisprovidedinFig.4forthecorrectionfactorCwhichcanbeusedtocomputethetotalresistanceasfR=R+CR(4)total0fcwhereRisdeterminedfromEq.(1),givenforthecasewiththeheatcsourceplacedatthecenter.Figure4-CorrectionfactorasafunctionofsourcelocationThecoordinatesinFig.4indicatethelocationofthecenteroftheheatsourcemeasuredfromthecenterofthebase-plateinmm:thecasewithacentrallylocatedheatsourcecorrespondsto(0,0),andthecasesshowninFig.3correspondto,0)and,forthefirstandsecondcases,respectively.OnlyonequadrantisshowninFig.4astheywouldbe,owingtotheassumptionofuniformcooling,symmetricalabout(0,0).Ascanbeseenfromthefigure,thecorrectionfactorincreasesfrom1astheheatsourceisplacedawayfromthecenter.Itisworthwhilenotingthattheincreaseis,however,veryminimaloverawideregionnearthecenter,andmostincreasesoccurclosertotheedges.UnlikeCintheearlierexpression,Ciscasedependent.itdependsfontheheat-sourcesize).However,itwasfoundthattheplotsofCfobtainedformanyothercasesexhibitessentiallythesameprofileasthatshowninFig.4,withmagnitudesatthecornersdeterminedfromEq.(3),andthedomainoftheplotdefinedbythemaximumdisplacementoftheheatsource.Basedonthisobservation,ageneralconclusioncanbemade:forallpracticalpurposes,aslongastheheatsourceisplacedclosertothecenterthantotheedgesoftheheatsink,thecorrectionalincreaseinthespreadingresistancemaybeignored,andC=1maybeused.Asnotedabove,thiswouldintroducefasmallerrorofnogreaterthan5-10%inthespreadingresistancewhich,inturn,isafractionofthetotalresistance.Sofar,wehaveassumedauniformcoolingovertheentirefinned-surfaceareaofthebase-plate.Althoughthisisausefulassumption,itisseldomrealizedinactualsituations.Itiswellknownthat,duetothethinnerboundarylayerandthelessdown-streamheatingeffect,adevicewouldbecooledmoreeffectivelyifitismountedtowardtheairinletside.Again,anumericalsimulationiscarriedoutusingourexampleproblemwiththeboundarylayereffectincluded.Figure5showstheresultingmodifiedcorrectionfactorasafunctionofthedistancefromthecenteroftheheatsinktotheheatsourceplacedalongthecenterlineaty=0:x=mmcorrespondstothefrontmostleadingedgelocationoftheheatsourceandx=mmtherearmosttrailingedgeplacement.Figure5-Correctionfactormodifiedforboundarylayereffectaty=0Ascanbeseenfromthefigure,itispossibletorealizeasmallimprovementbyplacingtheheatsourceforwardofthecenterlocationwhereC<1.However,itwasexperiencedinpracticethatfaccommodatingaheatsourceawayfromthecenterandensuringitsmountingorientationoftencauseadditionalproblemsduringmanufacturingandassemblyprocesses.SummaryandDiscussionAsimplecorrelationequationispresentedfordeterminingspreadingresistancesinheatsinkapplications.Asamplecalculationiscarriedoutforacasewithaheatsourceplacedatthecenteroftheheatsinkbase-plateandameanstoestimatethecorrectionfactortoaccountfortheeffectofchangingtheheat-sourcelocationisprovided.ItistobenotedthatthecorrelationprovidedhereinisageneralsolutionwhichreducestothewellknownKennedy'ssolution3whenRapproaches0:themathematicalequivalentofisothermal0boundarycondition.Kennedy'ssolutionisvalidonlywhenRis0sufficientlysmallsuchthatthefin-sideoftheheatsinkbase-plateisclosetoisothermal.Otherwise,Kennedy'ssolution,representingthelowerboundaryofthespreadingresistance,mayresultingrossunderestimationoftheresistance.Theearlierstudyrevealedthat,dependingontherelativemagnitudeoftheaverageheatsinkresistance,thespreadingresistancemayeitherincreaseordecreasewiththebase-platethickness.Iftheheatsinkresistanceissufficientlysmall,asinliquidcooledheatsinkapplications,thespreadingresistancealwaysincreaseswiththethickness,andanoptimumthicknessdoesnotexist.Ontheotherhand,iftheh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版環(huán)保產(chǎn)業(yè)技術(shù)轉(zhuǎn)移合同范本4篇
- 年度SKI系列二甲苯異構(gòu)化催化劑產(chǎn)業(yè)分析報告
- 2024離婚導(dǎo)致的版權(quán)許可合同
- 2024年心理咨詢師題庫帶答案(b卷)
- 地下室回頂施工方案
- 滯回比較器電壓課程設(shè)計
- 《員工手冊培訓(xùn)》課件
- 二零二五年度體育賽事觀眾免責(zé)條款4篇
- 2025年度數(shù)據(jù)中心承建合同標(biāo)的網(wǎng)絡(luò)安全保障3篇
- 2024銷售原油合作協(xié)議
- 中考語文非連續(xù)性文本閱讀10篇專項練習(xí)及答案
- 2022-2023學(xué)年度六年級數(shù)學(xué)(上冊)寒假作業(yè)【每日一練】
- 高中生物專題10 能量流動的過程分析及計算(原卷版)
- 法人不承擔(dān)責(zé)任協(xié)議書(3篇)
- 電工工具報價單
- 反歧視程序文件
- 油氣藏類型、典型的相圖特征和識別實例
- 流體靜力學(xué)課件
- 顧客忠誠度論文
- 實驗室安全檢查自查表
- 證券公司績效考核管理辦法
評論
0/150
提交評論