![2024學(xué)年安徽省合肥市廬陽區(qū)第六中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view/39c632afac1cabf361c54ae3a2ad50d9/39c632afac1cabf361c54ae3a2ad50d91.gif)
![2024學(xué)年安徽省合肥市廬陽區(qū)第六中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view/39c632afac1cabf361c54ae3a2ad50d9/39c632afac1cabf361c54ae3a2ad50d92.gif)
![2024學(xué)年安徽省合肥市廬陽區(qū)第六中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view/39c632afac1cabf361c54ae3a2ad50d9/39c632afac1cabf361c54ae3a2ad50d93.gif)
![2024學(xué)年安徽省合肥市廬陽區(qū)第六中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view/39c632afac1cabf361c54ae3a2ad50d9/39c632afac1cabf361c54ae3a2ad50d94.gif)
![2024學(xué)年安徽省合肥市廬陽區(qū)第六中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view/39c632afac1cabf361c54ae3a2ad50d9/39c632afac1cabf361c54ae3a2ad50d95.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024學(xué)年安徽省合肥市廬陽區(qū)第六中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若命題為“,”,則為()A., B.,C., D.,2.已知隨圓與雙曲線相同的焦點,則橢圓和雙曲線的離心,分別為()A. B.C. D.3.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.4.用1,2,3,4這4個數(shù)字可寫出()個沒有重復(fù)數(shù)字的三位數(shù)A.24 B.12C.81 D.645.已知雙曲線的虛軸長是實軸長的2倍,則實數(shù)的值是A. B.C. D.6.《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.167.已知數(shù)列的前n項和為,,,則=()A. B.C. D.8.已知某班有學(xué)生48人,為了解該班學(xué)生視力情況,現(xiàn)將所有學(xué)生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本已知3號,15號,39號學(xué)生在樣本中,則樣本中另外一個學(xué)生的編號是()A.26 B.27C.28 D.299.已知等差數(shù)列的前n項和為,公差,若(,),則()A.2024 B.2022C.2021 D.202010.已知等差數(shù)列的前項和為,,,當(dāng)取最大時的值為()A. B.C. D.11.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.12.設(shè),則曲線在點處的切線的傾斜角是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,滿足約束條件,則的最小值為______.14.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.15.若直線與雙曲線的右支交于不同的兩點,則的取值范圍__________16.已知數(shù)列的通項公式為,記數(shù)列的前項和為,則__________,的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.18.(12分)已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設(shè),求數(shù)列的前n項和.19.(12分)已知橢圓的左、右焦點分別是,,離心率為,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C方程;(2)設(shè)點P在直線上,過點P的兩條直線分別交曲線C于A,B兩點和M,N兩點,且,求直線AB的斜率與直線MN的斜率之和20.(12分)已知拋物線,過點作直線(1)若直線的斜率存在,且與拋物線只有一個公共點,求直線的方程(2)若直線過拋物線的焦點,且交拋物線于兩點,求弦長21.(12分)已知橢圓經(jīng)過點,且離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知點A,B是橢圓C的上,下頂點,點P是直線上的動點,直線PA與橢圓C的另一交點為E,直線PB與橢圓C的另一交點為F.證明:直線EF過定點22.(10分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【題目詳解】“,”的否命題為“,”,故選:B2、B【解題分析】設(shè)公共焦點為,推導(dǎo)出,可得出,進而可求得、的值.【題目詳解】設(shè)公共焦點為,則,則,即,故,即,,故選:B3、A【解題分析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【題目詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.4、A【解題分析】由題意,從4個數(shù)中選出3個數(shù)出來全排列即可.【題目詳解】由題意,從4個數(shù)中選出3個數(shù)出來全排列,共可寫出個三位數(shù).故選:A5、C【解題分析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì).6、D【解題分析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【題目詳解】解:根據(jù)題意,設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.7、D【解題分析】利用公式計算得到,得到答案【題目詳解】由已知得,即,而,所以故選:D8、B【解題分析】由系統(tǒng)抽樣可知抽取一個容量為4的樣本時,將48人按順序平均分為4組,由已知編號可得所求的學(xué)生來自第三組,設(shè)其編號為,則,進而求解即可【題目詳解】由系統(tǒng)抽樣可知,抽取一個容量為4的樣本時,將48人分為4組,第一組編號為1號至12號;第二組編號為13號至24號;第三組編號為25號至36號;第四組編號為37號至48號,故所求的學(xué)生來自第三組,設(shè)其編號為,則,所以,故選:B【題目點撥】本題考查系統(tǒng)抽樣的編號,屬于基礎(chǔ)題9、C【解題分析】根據(jù)題意令可得,結(jié)合等差數(shù)列前n項和公式寫出,進而得到關(guān)于的方程,解方程即可.【題目詳解】因為,令,得,又,,所以,有,解得.故選:C10、B【解題分析】由已知條件及等差數(shù)列通項公式、前n項和公式求基本量,再根據(jù)等差數(shù)列前n項和的函數(shù)性質(zhì)判斷取最大時的值.【題目詳解】令公差為,則,解得,所以,當(dāng)時,取最大值.故選:B11、A【解題分析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【題目詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A12、C【解題分析】根據(jù)導(dǎo)數(shù)的概念可得,再利用導(dǎo)數(shù)的幾何意義即可求解.【題目詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、0【解題分析】作出約束條件對應(yīng)的可行域,當(dāng)目標(biāo)函數(shù)過點時,取得最小值,求解即可.【題目詳解】作出約束條件對應(yīng)的可行域,如下圖陰影部分,聯(lián)立,可得交點為,目標(biāo)函數(shù)可化為,當(dāng)目標(biāo)函數(shù)過點時,取得最小值,即.故答案為:0.【題目點撥】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.14、【解題分析】設(shè)點關(guān)于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【題目詳解】解:設(shè)點關(guān)于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.15、【解題分析】聯(lián)立直線與雙曲線方程,可知二次項系數(shù)不為零、判別式大于零、兩根之和與兩根之積均大于零,據(jù)此構(gòu)造不等式組,解不等式組求得結(jié)果.詳解】將代入雙曲線方程整理可得:設(shè)直線與雙曲線右支交于兩點,解得:本題正確結(jié)果:【題目點撥】本題考查根據(jù)直線與雙曲線位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.16、①.②.【解題分析】首先確定的正負(fù),分別在和兩種情況下求得,代入即可求得;由可求得,分別在和兩種情況下結(jié)合一次函數(shù)和對勾函數(shù)單調(diào)性得到最小值,綜合可得最終結(jié)果.【題目詳解】令,解得:,則當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;;,當(dāng)時,;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增,又,,,當(dāng)時,;綜上所述:.故答案為:;.【題目點撥】關(guān)鍵點點睛:本題考查含絕對值的數(shù)列前項和的求解問題,解題關(guān)鍵是能夠確定數(shù)列的變號項,從而以變號項為分類基準(zhǔn)進行分類討論得到數(shù)列的前項和;求解數(shù)列中的最值問題的關(guān)鍵是能夠利用數(shù)列與函數(shù)的關(guān)系,結(jié)合函數(shù)單調(diào)性和來進行求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)建立空間直角坐標(biāo)系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標(biāo)原點,分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,D(3,6,0),A(0,6,0)設(shè)平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設(shè)二面角的平面角為由圖可知,18、(1)(2).【解題分析】(1)由數(shù)列的前n項和與通項公式之間的關(guān)系即可完成.(2)由錯位相減法即可解決此類“差比”數(shù)列的求和.【小問1詳解】由,得當(dāng)時,,上下兩式相減得,,又當(dāng)時,滿足上式,所以數(shù)列的通項公式;【小問2詳解】由(1)可知,所以,則,上下兩式相減得,所以.19、(1)(2)0【解題分析】(1)由條件得和,再結(jié)合可求解;(2)設(shè)直線AB的方程為:,與橢圓聯(lián)立,得到,同理得,再根據(jù)題中的條件化簡整理可求解.【小問1詳解】因為橢圓的離心率為,所以,所以①又因為過且垂直于x軸的直線被橢圓C截得的線段長為1,所以②,由①②可知,所以,,所以橢圓C的方程為【小問2詳解】因為點P在直線上,所以設(shè)點,由題可知,直線AB的斜率與直線MN的斜率都存在所以直線AB的方程為:,即,直線MN的方程為:,即,設(shè),,,,所以,消去y可得,,整理可得,且所以,,又因為,,所以,同理可得,又因為,所以,又因為,,,都是長度,所以,所以,整理可得,又因為,所以,所以直線AB的斜率與直線MN的斜率之和為020、(1)或;(2)8【解題分析】(1)根據(jù)題意設(shè)直線的方程為,聯(lián)立,消去得,因為只有一個公共點,則求解.(2)拋物線的焦點為,設(shè)直線的方程為,聯(lián)立,消去得,再根據(jù)過拋物線焦點的弦長公式求解.【題目詳解】(1)設(shè)直線的方程為,聯(lián)立,消去得,則,解得或,∴直線的方程為:或(2)拋物線的焦點為,則直線的方程為,設(shè),聯(lián)立,消去得,∴,∴【題目點撥】本題主要考查直線與拋物線的位置關(guān)系,還考查了運算求解的能力,屬于中檔題.21、(1);(2)證明見解析.【解題分析】(1)根據(jù)題意,列出的方程組,通過解方程組,即可求出答案.(2)法一:設(shè),,;當(dāng)時,根據(jù)點的坐標(biāo)寫出直線PA的方程,與橢圓方程聯(lián)立,可求出點的坐標(biāo);同理可求出點的坐標(biāo),然后即可求出直線EF的方程,從而證明直線EF過定點.法二:首先根據(jù)時直線EF的方程為,可判斷出直線EF過的定點M必在y軸上,設(shè)為;然后同方法一,求出點,的坐標(biāo),根據(jù),即可求出的值.【小問1詳解】由題意,知,解得,所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】法一:設(shè),,,當(dāng)時,直線PA的方程為,由,得解得,所以.所以同理可得所以直線EF的斜率為,所以直線EF的方程為,整理得,所以直線EF過定點當(dāng)時,點E,F(xiàn)在y軸上,EF的方程為,顯然過點綜上,直線EF過定點法二:當(dāng)點P在y軸上時,E,F(xiàn)分別與B,A重合,直線EF的方程為,若直線EF過定點M,則M必在y軸上,可設(shè)當(dāng)點P不在y軸上時,設(shè),,,則直線P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)3萬臺新能源汽車電機及1500臺風(fēng)力發(fā)電機配套沖片項目可行性研究報告寫作模板-申批備案
- 2025-2030全球?qū)ΨQ槳行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球高速塑料理瓶機行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球磨削數(shù)控系統(tǒng)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國智能體測一體機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球活細(xì)胞代謝分析儀行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球臨床試驗實驗室服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國生命科學(xué)智能制造服務(wù)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球無人機基礎(chǔ)設(shè)施檢查行業(yè)調(diào)研及趨勢分析報告
- 代辦服務(wù)合同
- 中華護理學(xué)會團體標(biāo)準(zhǔn)-氣管切開非機械通氣患者氣道護理
- 未成年入職免責(zé)協(xié)議書
- 光伏電站巡檢專項方案
- 2024年山東省東營市中考數(shù)學(xué)試題 (原卷版)
- 2024全國能源行業(yè)火力發(fā)電集控值班員理論知識技能競賽題庫(多選題)
- 公司員工外派協(xié)議書范文
- 信息科技重大版 七年級上冊 互聯(lián)網(wǎng)應(yīng)用與創(chuàng)新 第二單元教學(xué)設(shè)計 互聯(lián)網(wǎng)原理
- 肺栓塞的護理查房完整版
- 手術(shù)患者手術(shù)部位標(biāo)識制度
- 抖音麗人行業(yè)短視頻直播項目運營策劃方案
- (2024年)知識產(chǎn)權(quán)全套課件(完整)
評論
0/150
提交評論