2024屆天成大聯(lián)考數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁
2024屆天成大聯(lián)考數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁
2024屆天成大聯(lián)考數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁
2024屆天成大聯(lián)考數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁
2024屆天成大聯(lián)考數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆天成大聯(lián)考數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,滿足條件的三角形的個(gè)數(shù)為()A.0 B.1C.2 D.無數(shù)多2.已知拋物線的焦點(diǎn)恰為雙曲線的一個(gè)頂點(diǎn),的另一頂點(diǎn)為,與在第一象限內(nèi)的交點(diǎn)為,若,則直線的斜率為()A. B.C. D.3.與直線平行,且經(jīng)過點(diǎn)(2,3)的直線的方程為()A. B.C. D.4.已知橢圓的離心率為,直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),且,則橢圓的方程為A B.C. D.5.等比數(shù)列的第4項(xiàng)與第6項(xiàng)分別為12和48,則公比的值為()A. B.2C.或2 D.或6.已知直線:和:,若,則實(shí)數(shù)的值為()A. B.3C.-1或3 D.-17.將一個(gè)表面積為的球用一個(gè)正方體盒子裝起來,則這個(gè)正方體盒子的最小體積為()A. B.C. D.8.已知數(shù)列中,前項(xiàng)和為,且點(diǎn)在直線上,則=A. B.C. D.9.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.在中,,,且BC邊上的高為,則滿足條件的的個(gè)數(shù)為()A.3 B.2C.1 D.011.已知雙曲線的方程為,則下列關(guān)于雙曲線說法正確的是()A.虛軸長為4 B.焦距為C.焦點(diǎn)到漸近線的距離為4 D.漸近線方程為12.某四面體的三視圖如圖所示,該四面體的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與雙曲線交于兩點(diǎn),則該雙曲線的離心率的取值范圍是______14.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為____________.(結(jié)果保留)15.若雙曲線的漸近線與圓相切,則該雙曲線的實(shí)軸長為______16.已知雙曲線:,,是其左右焦點(diǎn).圓:,點(diǎn)為雙曲線右支上的動(dòng)點(diǎn),點(diǎn)為圓上的動(dòng)點(diǎn),則的最小值是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,有一條長度為3的線段,端點(diǎn),分別在軸、軸上運(yùn)動(dòng),為線段上一點(diǎn),且.(1)求點(diǎn)的軌跡的方程;(2)已知不過原點(diǎn)的直線與相交于,兩點(diǎn),且線段始終被直線平分.求的面積取最大時(shí)直線的方程.18.(12分)等差數(shù)列的前n項(xiàng)和為,已知(1)求的通項(xiàng)公式;(2)若,求n的最小值19.(12分)已知雙曲線C:的離心率為,過點(diǎn)作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點(diǎn)A,B,且A,B兩點(diǎn)都在以點(diǎn)為圓心的同一圓上,求m的取值范圍20.(12分)已知數(shù)列滿足,,設(shè).(1)證明數(shù)列為等比數(shù)列,并求通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(diǎn)(1)求證:平面;(2)求平面與平面CEB夾角的余弦值22.(10分)已知,,分別為三個(gè)內(nèi)角,,的對(duì)邊,.(Ⅰ)求;(Ⅱ)若=2,的面積為,求,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】利用正弦定理得到,進(jìn)而或,由,得,即可求解【題目詳解】由正弦定理得,,或,,,故滿足條件的有且只有一個(gè).故選:B2、D【解題分析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【題目詳解】因?yàn)閽佄锞€的焦點(diǎn),由題可知;又點(diǎn)在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時(shí),又,故直線的斜率為.故選:D.3、C【解題分析】由直線平行及直線所過的點(diǎn),應(yīng)用點(diǎn)斜式寫出直線方程即可.【題目詳解】與直線平行,且經(jīng)過點(diǎn)(2,3)的直線的方程為,整理得故選:C4、D【解題分析】根據(jù)等腰直角三角形的性質(zhì)可得,將代入橢圓方程,結(jié)合離心率為以及性質(zhì)列方程組求得與的值,從而可得結(jié)果.【題目詳解】設(shè)直線與橢圓在第一象限的交點(diǎn)為,因?yàn)?,所以,即,由可得,,故所求橢圓的方程為.故選D.【題目點(diǎn)撥】本題主要考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),以及橢圓離心率的應(yīng)用,意在考查對(duì)基礎(chǔ)知識(shí)掌握的熟練程度,屬于中檔題.5、C【解題分析】根據(jù)等比數(shù)列的通項(xiàng)公式計(jì)算可得;詳解】解:依題意、,所以,即,所以;故選:C6、D【解題分析】利用兩直線平行列式求出a值,再驗(yàn)證即可判斷作答.【題目詳解】因,則,解得或,當(dāng)時(shí),與重合,不符合題意,當(dāng)時(shí),,符合題意,所以實(shí)數(shù)的值為-1.故選:D7、C【解題分析】求出球的半徑,要使這個(gè)正方形盒子的體積最小,則這個(gè)正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,從而可得出答案.【題目詳解】解:設(shè)球的半徑為,則,得,故該球的半徑為11cm,若要使這個(gè)正方形盒子的體積最小,則這個(gè)正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,即22cm,所以這個(gè)正方體盒子的最小體積為.故選:C.8、C【解題分析】點(diǎn)在一次函數(shù)上的圖象上,,數(shù)列為等差數(shù)列,其中首項(xiàng)為,公差為,,數(shù)列的前項(xiàng)和,,故選C考點(diǎn):1、等差數(shù)列;2、數(shù)列求和9、A【解題分析】根據(jù)得出,根據(jù)充分必要條件的定義可判斷.【題目詳解】解:∵,向量,,∴,即,根據(jù)充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.10、B【解題分析】利用等面積法求得,再利用正弦定理求得,利用內(nèi)角和的關(guān)系及兩角和差化積公式,二倍角公式轉(zhuǎn)化為,再利用正弦函數(shù)的性質(zhì)求滿足條的的個(gè)數(shù),即可求解.【題目詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結(jié)合二倍角公式化簡得又,則,,且由正弦函數(shù)的性質(zhì)可知,滿足的有2個(gè),即滿足條件的的個(gè)數(shù)為2.故選:B11、D【解題分析】根據(jù)雙曲線的性質(zhì)逐一判斷即可.【題目詳解】在雙曲線中,焦點(diǎn)在軸上,,,,所以虛軸長為6,故A錯(cuò)誤;焦距為,故B錯(cuò)誤;漸近線方程為,故D正確;焦點(diǎn)到漸近線的距離為,故C錯(cuò)誤;故選:D.12、A【解題分析】根據(jù)三視圖可得如圖所示的幾何體(三棱錐),根據(jù)三視圖中的數(shù)據(jù)可計(jì)算該幾何體的表面積.【題目詳解】根據(jù)三視圖可得如圖所示的幾何體-正三棱錐,其側(cè)面為等腰直角三角形,底面等邊三角形,由三視圖可得該正三棱錐的側(cè)棱長為1,故其表面積為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】分析可知,由可求得結(jié)果.【題目詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.14、【解題分析】由題設(shè)知:圓錐的軸截面為等邊三角形,進(jìn)而求圓錐的底面周長,由扇形面積公式求圓錐的側(cè)面積大小.【題目詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側(cè)面積大小為.故答案為:.15、【解題分析】由雙曲線方程寫出漸近線,根據(jù)相切關(guān)系,結(jié)合點(diǎn)線距離公式求參數(shù)a,即可確定實(shí)軸長.【題目詳解】由題設(shè),漸近線方程為,且圓心為,半徑為1,所以,由相切關(guān)系知:,可得,又,即,所以雙曲線的實(shí)軸長為.故答案為:16、##【解題分析】利用雙曲線定義,將的最小值問題轉(zhuǎn)化為的最小值問題,然后結(jié)合圖形可解.【題目詳解】由題設(shè)知,,,,圓的半徑由點(diǎn)為雙曲線右支上的動(dòng)點(diǎn)知∴∴.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)設(shè),根據(jù)題意可得,,利用兩點(diǎn)之間的距離公式表示出,化簡即可得出結(jié)果;(2)設(shè),,線段的中點(diǎn)為,利用兩點(diǎn)坐標(biāo)表示直線斜率的公式和點(diǎn)差法求出直線的斜率,設(shè)的方程為,聯(lián)立橢圓方程并消去y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理表示、進(jìn)而得出弦長,利用點(diǎn)到直線的距離公式求出原點(diǎn)到的距離,結(jié)合基本不等式計(jì)算即可.【小問1詳解】設(shè),由為線段上一點(diǎn),且,得,,又,則,整理可得,所以軌跡的方程為;【小問2詳解】設(shè),,線段的中點(diǎn)為.∵在直線上,∴,∵A,在軌跡上,∴兩式相減,可得,∴,即直線的斜率為,依題意,可設(shè)直線的方程為,由可得,則解得且由韋達(dá)定理,得,∴∵原點(diǎn)到直線的距離為∴,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,即時(shí),三角形的面積最大,此時(shí)直線的方程為.18、(1)(2)12【解題分析】(1)設(shè)的公差為d,根據(jù)題意列出方程組,求得的值,即可求解;(2)利用等差數(shù)的求和公式,得到,結(jié)合的單調(diào)性,即可求解.【小問1詳解】解:設(shè)的公差為d,因?yàn)?,可得,解得,所以,即?shù)列的通項(xiàng)公式為【小問2詳解】解:由,可得,根據(jù)二次函數(shù)的性質(zhì)且,可得單調(diào)遞增,因?yàn)?,所以?dāng)時(shí),,故n的最小值為1219、(1)(2)或【解題分析】(1)利用雙曲線離心率、點(diǎn)在雙曲線上及得到關(guān)于、、的方程組,進(jìn)而求出雙曲線的標(biāo)準(zhǔn)方程;(2)聯(lián)立直線和雙曲線的方程,得到關(guān)于的一元二次方程,利用直線和雙曲線的位置關(guān)系、根與系數(shù)的關(guān)系得到兩個(gè)交點(diǎn)坐標(biāo)間的關(guān)系,利用A,B兩點(diǎn)都在以點(diǎn)為圓心的同一圓上得到,再利用向量的數(shù)量積為0得到、的關(guān)系,進(jìn)而消去得到的不等式進(jìn)行求解.【小問1詳解】解:因?yàn)檫^點(diǎn)作垂直于x軸的直線截雙曲線C所得弦長為,所以點(diǎn)在雙曲線上,由題意,得,解得,,,即雙曲線的標(biāo)準(zhǔn)方程為.【小問2詳解】解:聯(lián)立,得,因?yàn)橹本€與該雙曲線C交于不同的兩點(diǎn),所以且,即且,設(shè),,的中點(diǎn),則,,因?yàn)锳,B兩點(diǎn)都在以點(diǎn)為圓心的同一圓上,所以,即,因?yàn)?,,所以,即,將代入,得,解得或,即m的取值范圍為或.20、(1)證明見解析,;(2).【解題分析】(1)計(jì)算可得出,根據(jù)等比數(shù)列的定義可得出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式,進(jìn)而可求得數(shù)列的通項(xiàng)公式;(2)求得,利用錯(cuò)位相減法可求得.【小問1詳解】證明:對(duì)任意的,,則,則,因?yàn)?,則,,,以此類推可知,對(duì)任意的,,所以,,所以,數(shù)列是等比數(shù)列,且該數(shù)列的首項(xiàng)為,公比為,所以,,則.【小問2詳解】解:,則,,下式上式得.21、(1)證明見解析;(2).【解題分析】(1)連接與交于點(diǎn)O,連接OE,得到,再利用線面平行的判定定理證明即可;(2)根據(jù),底面,建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量,再根據(jù)底

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論