陜西省西安市第四十六中學(xué)2024年高二上數(shù)學(xué)期末調(diào)研試題含解析_第1頁(yè)
陜西省西安市第四十六中學(xué)2024年高二上數(shù)學(xué)期末調(diào)研試題含解析_第2頁(yè)
陜西省西安市第四十六中學(xué)2024年高二上數(shù)學(xué)期末調(diào)研試題含解析_第3頁(yè)
陜西省西安市第四十六中學(xué)2024年高二上數(shù)學(xué)期末調(diào)研試題含解析_第4頁(yè)
陜西省西安市第四十六中學(xué)2024年高二上數(shù)學(xué)期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省西安市第四十六中學(xué)2024年高二上數(shù)學(xué)期末調(diào)研試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列,且,則()A.16 B.32C.24 D.642.已知直線過(guò)點(diǎn),當(dāng)直線與圓有兩個(gè)不同的交點(diǎn)時(shí),其斜率的取值范圍是()A. B.C. D.3.設(shè)函數(shù),當(dāng)自變量t由2變到2.5時(shí),函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.114.設(shè),若,則()A. B.C. D.5.下列結(jié)論中正確的有()A.若,則 B.若,則C.若,則 D.若,則6.已知四棱錐,平面PAB,平面PAB,底面ABCD是梯形,,,,滿足上述條件的四棱錐的頂點(diǎn)P的軌跡是()A.橢圓 B.橢圓的一部分C.圓 D.不完整的圓7.若a,b,c為實(shí)數(shù),且,則以下不等式成立的是()A. B.C. D.8.已知三棱柱的所有棱長(zhǎng)均為2,平面,則異面直線,所成角的余弦值為()A. B.C. D.9.已知分別是雙曲線的左、右焦點(diǎn),動(dòng)點(diǎn)P在雙曲線的左支上,點(diǎn)Q為圓上一動(dòng)點(diǎn),則的最小值為()A.6 B.7C. D.510.直線過(guò)橢圓內(nèi)一點(diǎn),若點(diǎn)為弦的中點(diǎn),設(shè)為直線的斜率,為直線的斜率,則的值為()A. B.C. D.11.已知實(shí)數(shù),滿足不等式組,則的最小值為()A2 B.3C.4 D.512.和的等差中項(xiàng)與等比中項(xiàng)分別為()A., B.2,C., D.1,二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,,,則數(shù)列中最大項(xiàng)的數(shù)值為__________14.設(shè)等差數(shù)列,前項(xiàng)和分別為,,若對(duì)任意自然數(shù)都有,則的值為______.15.若拋物線:上的一點(diǎn)到它的焦點(diǎn)的距離為3,則__.16.如圖:二面角等于,是棱上兩點(diǎn),分別在半平面內(nèi),,則的長(zhǎng)等于__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點(diǎn),(1)求證:平面平面;(2)求二面角的大小18.(12分)如圖,在三棱錐中,,,為的中點(diǎn).(1)求證:平面;(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.19.(12分)已知是拋物線的焦點(diǎn),直線交拋物線于、兩點(diǎn).(1)若直線過(guò)點(diǎn)且,求;(2)若平分線段,求直線的方程.20.(12分)已知拋物線的焦點(diǎn)在直線上(1)求拋物線的方程(2)設(shè)直線經(jīng)過(guò)點(diǎn),且與拋物線有且只有一個(gè)公共點(diǎn),求直線的方程21.(12分)如圖,在長(zhǎng)方體中,,,,M為上一點(diǎn),且(1)求點(diǎn)到平面的距離;(2)求二面角的余弦值22.(10分)如圖,在四棱錐中,四邊形是直角梯形,,,,為等邊三角形.(1)證明:;(2)求點(diǎn)到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】由等比數(shù)列的定義先求出公比,然后可解..【題目詳解】,得故選:A2、A【解題分析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【題目詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個(gè)不同的交點(diǎn)故選:A3、B【解題分析】利用平均變化率的公式即得.【題目詳解】∵,∴.故選:B.4、B【解題分析】先求出,再利用二倍角公式、和差角公式即可求解.【題目詳解】因?yàn)?,且,所?所以,,所以.故選:B5、D【解題分析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和運(yùn)算法則分別計(jì)算函數(shù)的導(dǎo)數(shù),即可判斷選項(xiàng).【題目詳解】A.若,則,故A錯(cuò)誤;B.若,則,故B錯(cuò)誤;C.若,則,故C錯(cuò)誤;D.若,則,故D正確.故選:D6、D【解題分析】根據(jù)題意,分析得動(dòng)點(diǎn)滿足的條件,結(jié)合圓以及橢圓的方程,以及點(diǎn)的限制條件,即可判斷軌跡.【題目詳解】因?yàn)槠矫鍼AB,平面PAB,則//,又面面,故可得;因?yàn)?,故可得,則,綜上所述:動(dòng)點(diǎn)在垂直的平面中,且滿足;為方便研究,不妨建立平面直角坐標(biāo)系進(jìn)行說(shuō)明,在平面中,因?yàn)?,以中點(diǎn)為坐標(biāo)原點(diǎn),以為軸,過(guò)且垂直于的直線為軸建立平面直角坐標(biāo)系,如下所示:因?yàn)椋士傻?,整理得:,故?dòng)點(diǎn)的軌跡是一個(gè)圓;又當(dāng)三點(diǎn)共線時(shí),幾何體不是空間幾何體,故動(dòng)點(diǎn)的軌跡是一個(gè)不完整的圓.故選:.【題目點(diǎn)撥】本題考察立體幾何中動(dòng)點(diǎn)的軌跡問(wèn)題,處理的關(guān)鍵是利用立體幾何知識(shí),找到動(dòng)點(diǎn)滿足的條件,進(jìn)而求解軌跡.7、C【解題分析】利用不等式的性質(zhì)直接推導(dǎo)和取值驗(yàn)證相結(jié)合可解.【題目詳解】取可排除ABD;由不等式的性質(zhì)易得C正確.故選:C8、A【解題分析】建立空間直角坐標(biāo)系,利用向量法求解【題目詳解】以為坐標(biāo)原點(diǎn),平面內(nèi)過(guò)點(diǎn)且垂直于的直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖所示,則,,,,∴,,∴,∴異面直線,所成角的余弦值為.故選:A9、A【解題分析】由雙曲線的定義及三角形的幾何性質(zhì)可求解.【題目詳解】如圖,圓的圓心為,半徑為1,,,當(dāng),,三點(diǎn)共線時(shí),最小,最小值為,而,所以故選:A10、A【解題分析】設(shè)點(diǎn)與的坐標(biāo),進(jìn)而可表示與,再結(jié)合兩點(diǎn)在橢圓上,可得的值.【題目詳解】設(shè)點(diǎn)與,則,,所以,,又點(diǎn)與在橢圓上,所以,,作差可得,即,所以,故選:A.11、B【解題分析】畫出可行域,找到最優(yōu)解,得最值.【題目詳解】畫出不等式組對(duì)應(yīng)的可行域如下:平行移動(dòng)直線,當(dāng)直線過(guò)點(diǎn)時(shí),.故選:B.12、C【解題分析】根據(jù)等差中項(xiàng)和等比中項(xiàng)的概念分別求值即可.【題目詳解】和的等差中項(xiàng)為,和的等比中項(xiàng)為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】用累加法求出通項(xiàng),再由通項(xiàng)表達(dá)式確定最大項(xiàng).【題目詳解】當(dāng)時(shí),,所以數(shù)列中最大項(xiàng)的數(shù)值為故答案為:14、【解題分析】由等差數(shù)列的性質(zhì)可得:.再利用已知即可得出【題目詳解】由等差數(shù)列的性質(zhì)可得:對(duì)于任意的都有,則故答案為:【題目點(diǎn)撥】本題考查了等差數(shù)列的性質(zhì),求和公式,考查了推理能力與計(jì)算能力,屬于中檔題15、【解題分析】通過(guò)拋物線的定義列式求解【題目詳解】根據(jù)拋物線的定義知,所以.故答案為:16、【解題分析】由題意,二面角等于,根據(jù),結(jié)合向量的運(yùn)算,即可求解.【題目詳解】由題意,二面角等于,可得向量,,因?yàn)?,可?所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)依題意可得平行四邊形是矩形,即可得到,再由及面面垂直的性質(zhì)定理得到平面,從而得到,即可得到平面,從而得證;(2)建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值,即可得解;【小問(wèn)1詳解】證明:因?yàn)闉榈闹悬c(diǎn),,所以,又,所以四邊形為平行四邊形,因?yàn)椋云叫兴倪呅问蔷匦?,所以,因?yàn)?,所以,又因?yàn)槠矫嫫矫?,平面平面面,所以平面,因?yàn)槊?,所以,又因?yàn)?,平面,所以平面,因?yàn)槠矫?,所以平面平面;【小?wèn)2詳解】解:由(1)可得:兩兩垂直,如圖,分別以所在的直線為軸建立空間直角坐標(biāo)系,則則,設(shè)平面的一個(gè)法向量,由則,令,則,所以,設(shè)平面的一個(gè)法向量,所以,根據(jù)圖像可知二面角為銳二面角,所以二面角的大小為;18、(1)證明見解析;(2)【解題分析】(1)易得,再由勾股定理逆定理證明,即可得線面垂直;(2)根據(jù)(1)得,進(jìn)而根據(jù)幾何關(guān)系,利用等體積法求解即可.【題目詳解】解:(1)連接,∵,是中點(diǎn),∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵點(diǎn)在棱上,且,,為的中點(diǎn).∴,∴由余弦定理得,即,∴,由(1)平面,設(shè)點(diǎn)到平面的距離為∴,即,解得:所以點(diǎn)到平面的距離為.19、(1);(2).【解題分析】(1)分析可知直線的方程為,將直線的方程與拋物線方程聯(lián)立,求出點(diǎn)的坐標(biāo),利用拋物線的定義可求得;(2)利用點(diǎn)差法可求得直線的斜率,利用點(diǎn)斜式可得出直線的方程.【小問(wèn)1詳解】解:設(shè)點(diǎn)、,則直線的傾斜角為,易知點(diǎn),直線的方程為,聯(lián)立,可得,由題意可知,則,,因此,.【小問(wèn)2詳解】解:設(shè)、,若軸,則線段的中點(diǎn)在軸上,不合乎題意,所以直線的斜率存在,因?yàn)?、在拋物線上,則,兩式相減得,又因?yàn)闉榈闹悬c(diǎn),則,所以,直線的斜率為,此時(shí),直線的方程為,即.20、(1)(2)的方程為、、【解題分析】(1)求得點(diǎn)的坐標(biāo),由此求得,進(jìn)而求得拋物線的方程.(2)結(jié)合圖象以及判別式求得直線的方程.【小問(wèn)1詳解】拋物線的焦點(diǎn)在軸上,且開口向上,直線與軸的交點(diǎn)為,則,所以,拋物線的方程為.【小問(wèn)2詳解】當(dāng)直線的斜率不存在時(shí),直線與拋物線只有一個(gè)公共點(diǎn).那個(gè)直線的斜率存在時(shí),設(shè)直線的方程為,,,,解得或.所以直線的方程為或.綜上所述,的方程為、、.21、(1)(2)【解題分析】(1)以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系,利用空間向量求解,(2)求出和的法向量,利用空間向量求解【小問(wèn)1詳解】以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系由,,,,所以,,,因此,,,設(shè)平面的法向量,則,,所以,取,則,,于是,所以點(diǎn)到平面的距離【小問(wèn)2詳解】由,,設(shè)平面的法向量,則,,所以,取,則,,于是,由(1)知平面的法向量為,記二面角的平面角為,則,由圖可知二面角為銳角,所以所求二面角的余弦值為22、(1)略;(2)【解題分析】(1)推導(dǎo)出BD⊥BC,PB⊥BC,從而BC⊥平面PBD,由此能證明PD⊥BC.(2)利用等體積求得點(diǎn)B到面的距離【題目詳解】(1)∵在四棱錐P﹣ABCD中,四邊形

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論