版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年黑龍江省齊齊哈爾市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案及部分解析)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.構(gòu)件承載能力不包括()。
A.強度B.剛度C.穩(wěn)定性D.平衡性
2.
3.
4.
5.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
6.
7.方程x2+2y2-z2=0表示的二次曲面是()
A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面8.
9.設(shè)Y=e-3x,則dy等于().
A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
10.A.
B.
C.
D.
11.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x12.在空間直角坐標(biāo)系中,方程x+z2=z的圖形是A.A.圓柱面B.圓C.拋物線D.旋轉(zhuǎn)拋物面13.設(shè)x是f(x)的一個原函數(shù),則f(x)=A.A.x2/2B.2x2
C.1D.C(任意常數(shù))14.A.A.3
B.5
C.1
D.
15.
16.()。A.-2B.-1C.0D.2
17.
18.()。A.sinx+ccosx
B.sinx-xcosx
C.xcosx-sinx
D.-(sinx+xcosx)
19.
20.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)二、填空題(20題)21.設(shè),則y'=________。22.
23.
24.設(shè)y=cosx,則y'=______
25.極限=________。
26.
27.設(shè)z=2x+y2,則dz=______。28.
29.
30.
31.32.33.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.34.35.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
36.
37.交換二重積分次序=______.
38.
39.設(shè)當(dāng)x≠0時,在點x=0處連續(xù),當(dāng)x≠0時,F(xiàn)(x)=-f(x),則F(0)=______.40.設(shè)x=f(x,y)在點p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點,則______.三、計算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
42.求微分方程y"-4y'+4y=e-2x的通解.
43.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
44.
45.證明:46.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
47.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
48.
49.50.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.51.52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.53.
54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.55.56.
57.將f(x)=e-2X展開為x的冪級數(shù).58.求曲線在點(1,3)處的切線方程.59.求微分方程的通解.60.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)61.
62.
63.用洛必達(dá)法則求極限:64.65.設(shè)
66.
67.68.69.70.五、高等數(shù)學(xué)(0題)71.某廠每天生產(chǎn)某產(chǎn)品q個單位時,總成本C(q)=0.5q2+36q+9800(元),問每天生產(chǎn)多少時,平均成本最低?
六、解答題(0題)72.
參考答案
1.D
2.A解析:
3.D
4.A解析:
5.A本題考查的知識點為級數(shù)的絕對收斂與條件收斂。
由于的p級數(shù),可知為收斂級數(shù)。
可知收斂,所給級數(shù)絕對收斂,故應(yīng)選A。
6.C
7.B對照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。
8.C
9.C
10.B
11.D本題考查的知識點為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
12.A
13.Cx為f(x)的一個原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。
14.A本題考查的知識點為判定極值的必要條件.
故應(yīng)選A.
15.D解析:
16.A
17.D解析:
18.A
19.B
20.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點M0的坐標(biāo)為(e,e),可知應(yīng)選D.
21.
22.
23.5/4
24.-sinx25.因為所求極限中的x的變化趨勢是趨近于無窮,因此它不是重要極限的形式,由于=0,即當(dāng)x→∞時,為無窮小量,而cosx-1為有界函數(shù),利用無窮小量性質(zhì)知
26.eyey
解析:27.2dx+2ydy28.3yx3y-1
29.[-11]
30.11解析:31.
32.33.1/2本題考查的知識點為計算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對y積分,后對x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對x積分,后對Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
34.e235.本題考查的知識點為二重積分的計算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此
36.
解析:
37.本題考查的知識點為交換二重積分次序.
積分區(qū)域D:0≤x≤1,x2≤y≤x
積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此
38.39.1本題考查的知識點為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點x=0連續(xù),則必有,由題設(shè)可知
40.0本題考查的知識點為二元函數(shù)極值的必要條件.
由于z=f(x,y)在點P0(x0,y0)可微分,P(x0,y0)為z的極值點,由極值的必要條件可知
41.函數(shù)的定義域為
注意
42.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
43.由等價無窮小量的定義可知
44.
45.
46.由二重積分物理意義知
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
48.
49.
50.
51.
52.
列表:
說明
53.
則
54.
55.
56.由一階線性微分方程通解公式有
57.58.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年定制櫥柜項目立項申請報告
- 2025年毛細(xì)管電泳儀項目提案報告
- 2024年精裝修修護(hù)工程協(xié)議樣本版B版
- 金色的魚鉤讀書心得模板10篇
- 安全生產(chǎn)演講稿范文10篇
- 做銷售的實習(xí)報告3篇
- 銷售提成方案模板匯編5篇
- 2024年五年級數(shù)學(xué)上冊 四 可能性 1簡單隨機現(xiàn)象和等可能性教學(xué)實錄 冀教版
- 活動策劃書(15篇)
- 2024-2025學(xué)年新教材高中地理 第三章 大氣的運動 第二節(jié) 氣壓帶和風(fēng)帶教學(xué)實錄 新人教版選修1
- 課程思政專題培訓(xùn)
- 食品買賣合同范本
- 期末素養(yǎng)質(zhì)量檢測卷(試題)-2024-2025學(xué)年三年級上冊數(shù)學(xué)人教版
- 質(zhì)控競聘課件
- 2024年房地產(chǎn)開發(fā)商與承建商之間的工程承包合同
- 2024-2025學(xué)年高二上學(xué)期期中家長會-家校同頻共話成長 課件
- 語文-句子成分劃分名師公開課獲獎?wù)n件百校聯(lián)賽一等獎?wù)n件
- 班組安全爭先創(chuàng)優(yōu)競賽活動考核細(xì)則表
- 2024-2030年中國眼視光行業(yè)現(xiàn)狀態(tài)勢與未來前景預(yù)測報告
- 北京市西城區(qū)2022-2023學(xué)年高三上學(xué)期期末生物試題 附解析
- 《中文歌曲在對外漢語文化教學(xué)中的應(yīng)用研究》
評論
0/150
提交評論