高中數(shù)學(xué)必修一必修四知識點(diǎn)總結(jié)(杠杠的)_第1頁
高中數(shù)學(xué)必修一必修四知識點(diǎn)總結(jié)(杠杠的)_第2頁
高中數(shù)學(xué)必修一必修四知識點(diǎn)總結(jié)(杠杠的)_第3頁
高中數(shù)學(xué)必修一必修四知識點(diǎn)總結(jié)(杠杠的)_第4頁
高中數(shù)學(xué)必修一必修四知識點(diǎn)總結(jié)(杠杠的)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第頁數(shù)學(xué)知識點(diǎn)總結(jié)高中數(shù)學(xué)必修1知識點(diǎn)第一章集合與函數(shù)概念〖1.1〗集合【1.1.1】集合的含義與表示(1)集合的概念集合中的元素具有確定性、互異性和無序性.(2)常用數(shù)集及其記法表示自然數(shù)集,或表示正整數(shù)集,表示整數(shù)集,表示有理數(shù)集,表示實(shí)數(shù)集.(3)集合與元素間的關(guān)系對象與集合的關(guān)系是,或者,兩者必居其一.只要構(gòu)成兩個(gè)集合的元素是一樣的,就稱這兩個(gè)集合相等。(4)集合的表示法①自然語言法:用文字?jǐn)⑹龅男问絹砻枋黾?②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合.(5)集合的分類①含有有限個(gè)元素的集合叫做有限集.②含有無限個(gè)元素的集合叫做無限集.③不含有任何元素的集合叫做空集().把研究的對象統(tǒng)稱為元素,把一些元素組成的總體叫做集合?!?.1.2】集合間的基本關(guān)系1、一般地,對于兩個(gè)集合A、B,如果集合A中任意一個(gè)元素都是集合B中的元素,則稱集合A是集合B的子集。記作.2、如果集合,但存在元素,且,則稱集合A是集合B的真子集.記作:AB.3、把不含任何元素的集合叫做空集.記作:.并規(guī)定:空集合是任何集合的子集.4、如果集合A中含有n個(gè)元素,則集合A有個(gè)子集,個(gè)真子集.5、子集、真子集、集合相等名稱記號意義性質(zhì)示意圖子集(或A中的任一元素都屬于B(1)AA(2)(3)若且,則(4)若且,則或真子集AB(或BA),且B中至少有一元素不屬于A(1)(A為非空子集)(2)若且,則集合相等A中的任一元素都屬于B,B中的任一元素都屬于A(1)AB(2)BA數(shù)的最大值,記作.②一般地,設(shè)函數(shù)的定義域?yàn)?,如果存在?shí)數(shù)滿足:(1)對于任意的,都有;(2)存在,使得.那么,我們稱是函數(shù)的最小值,記作.【1.3.2】奇偶性(4)函數(shù)的奇偶性①定義及判定方法函數(shù)的性質(zhì)定義圖象判定方法函數(shù)的奇偶性如果對于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)叫做奇函數(shù).(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對稱)(2)利用圖象(圖象關(guān)于原點(diǎn)對稱)如果對于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)叫做偶函數(shù).(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對稱)(2)利用圖象(圖象關(guān)于y軸對稱)②若函數(shù)為奇函數(shù),且在處有定義,則.③奇函數(shù)在軸兩側(cè)相對稱的區(qū)間增減性相同,偶函數(shù)在軸兩側(cè)相對稱的區(qū)間增減性相反.④在公共定義域內(nèi),兩個(gè)偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個(gè)偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個(gè)偶函數(shù)與一個(gè)奇函數(shù)的積(或商)是奇函數(shù).〖補(bǔ)充知識〗函數(shù)的圖象(1)作圖①平移變換②伸縮變換③對稱變換第二章基本初等函數(shù)(Ⅰ)〖2.1〗指數(shù)函數(shù)【2.1.1】指數(shù)與指數(shù)冪的運(yùn)算1、根式的概念(1)一般地,如果,那么叫做的次方根。其中.(2)當(dāng)為奇數(shù)時(shí),;(3)當(dāng)為偶數(shù)時(shí),(4)我們規(guī)定:;;(5)運(yùn)算性質(zhì):①②③注意口訣:底數(shù)取倒數(shù),指數(shù)取相反數(shù).【2.1.2】指數(shù)函數(shù)及其性質(zhì)(4)指數(shù)函數(shù)函數(shù)名稱指數(shù)函數(shù)定義0101函數(shù)且叫做指數(shù)函數(shù)0101圖象定義域值域過定點(diǎn)圖象過定點(diǎn),即當(dāng)時(shí),.奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對 圖象的影響在第一象限內(nèi),越大圖象越高;在第二象限內(nèi),越大圖象越低.〖2.2〗對數(shù)函數(shù)【2.2.1】對數(shù)與對數(shù)運(yùn)算對數(shù)的定義①若,則叫做以為底的對數(shù),記作,其中叫做底數(shù),叫做真數(shù).②負(fù)數(shù)和零沒有對數(shù).③對數(shù)式與指數(shù)式的互化:.(2)幾個(gè)重要的對數(shù)恒等式,,.(3)常用對數(shù)與自然對數(shù)常用對數(shù):,即;自然對數(shù):,即(其中…).(4)對數(shù)的運(yùn)算性質(zhì)如果,那么①加法:②減法:③數(shù)乘:④⑤⑥換底公式:⑦倒數(shù)關(guān)系:.【2.2.2】對數(shù)函數(shù)及其性質(zhì)(5)對數(shù)函數(shù)函數(shù)名稱對數(shù)函數(shù)定義函數(shù)且叫做對數(shù)函數(shù)圖象001001定義域值域過定點(diǎn)圖象過定點(diǎn),即當(dāng)時(shí),.奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對 圖象的影響在第一象限內(nèi),越大圖象越靠低;在第四象限內(nèi),越大圖象越靠高.(6)反函數(shù)的概念設(shè)函數(shù)的定義域?yàn)椋涤驗(yàn)?,從式子中解出,得式子.如果對于在中的任何一個(gè)值,通過式子,在中都有唯一確定的值和它對應(yīng),那么式子表示是的函數(shù),函數(shù)叫做函數(shù)的反函數(shù),記作,習(xí)慣上改寫成.(7)反函數(shù)的求法①確定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式中反解出;③將改寫成,并注明反函數(shù)的定義域.(8)反函數(shù)的性質(zhì)①原函數(shù)與反函數(shù)的圖象關(guān)于直線對稱.②函數(shù)的定義域、值域分別是其反函數(shù)的值域、定義域.③若在原函數(shù)的圖象上,則在反函數(shù)的圖象上.④一般地,函數(shù)要有反函數(shù)則它必須為單調(diào)函數(shù).〖2.3〗冪函數(shù)(1)冪函數(shù)的定義一般地,函數(shù)叫做冪函數(shù),其中為自變量,是常數(shù)(2)冪函數(shù)的圖象(3)冪函數(shù)的性質(zhì)①圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無圖象.冪函數(shù)是偶函數(shù)時(shí),圖象分布在第一、二象限(圖象關(guān)于軸對稱);是奇函數(shù)時(shí),圖象分布在第一、三象限(圖象關(guān)于原點(diǎn)對稱);是非奇非偶函數(shù)時(shí),圖象只分布在第一象限.②過定點(diǎn):所有的冪函數(shù)在都有定義,并且圖象都通過點(diǎn).③單調(diào)性:如果,則冪函數(shù)的圖象過原點(diǎn),并且在上為增函數(shù).如果,則冪函數(shù)的圖象在上為減函數(shù),在第一象限內(nèi),圖象無限接近軸與軸.④奇偶性:當(dāng)為奇數(shù)時(shí),冪函數(shù)為奇函數(shù),當(dāng)為偶數(shù)時(shí),冪函數(shù)為偶函數(shù).當(dāng)(其中互質(zhì),和),若為奇數(shù)為奇數(shù)時(shí),則是奇函數(shù),若為奇數(shù)為偶數(shù)時(shí),則是偶函數(shù),若為偶數(shù)為奇數(shù)時(shí),則是非奇非偶函數(shù).⑤圖象特征:冪函數(shù),當(dāng)時(shí),若,其圖象在直線下方,若,其圖象在直線上方,當(dāng)時(shí),若,其圖象在直線上方,若,其圖象在直線下方.〖補(bǔ)充知識〗二次函數(shù)(1)二次函數(shù)解析式的三種形式①一般式:②頂點(diǎn)式:③兩根式:(2)二次函數(shù)圖象的性質(zhì)①對稱軸方程為頂點(diǎn)坐標(biāo)是.②當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增,當(dāng)時(shí),;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減,當(dāng)時(shí),.③二次函數(shù)當(dāng)時(shí),圖象與軸有兩個(gè)交點(diǎn)(3)一元二次方程根的分布設(shè)一元二次方程的兩實(shí)根為,且.令,從以下四個(gè)方面來分析此類問題:①開口方向:②對稱軸位置:③判別式:④端點(diǎn)函數(shù)值符號.(4)二次函數(shù)在閉區(qū)間上的最值設(shè)在區(qū)間上的最大值為,最小值為,令.(Ⅰ)當(dāng)時(shí)(開口向上)①若,則②若,則③若,則xy0xy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)xy0aOabx2xy0aOabx2pqf(p)f(q)xxy0aOabx2pqf(p)f(q)(Ⅱ)當(dāng)時(shí)(開口向下)xy0aOabx2pqf(p)f(q)①若xy0aOabx2pqf(p)f(q)xyxy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)xy0aOabx2pxy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)高中數(shù)學(xué)必修4知識點(diǎn)第一章三角函數(shù)2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標(biāo)軸上的角的集合為3、與角終邊相同的角的集合為4、長度等于半徑長的弧所對的圓心角叫做弧度.5、半徑為的圓的圓心角所對弧的長為,則角的弧度數(shù)的絕對值是.6、弧度制與角度制的換算公式:,,.PvxyAOMT7、若扇形的圓心角為,半徑為,弧長為,周長為,面積為,則,,PvxyAOMT8、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是,它與原點(diǎn)的距離是,則,,.9、三角函數(shù)在各象限的符號:第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.10、三角函數(shù)線:,,.11、角三角函數(shù)的基本關(guān)系:;(3)倒數(shù)關(guān)系:12、函數(shù)的誘導(dǎo)公式:,,.,,.,,.,,.口訣:函數(shù)名稱不變,符號看象限.,.,.口訣:正弦與余弦互換,符號看象限.13、①的圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.②數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.14、函數(shù)的性質(zhì):=1\*GB3①振幅:;=2\*GB3②周期:;=3\*GB3③頻率:;=4\*GB3④相位:;=5\*GB3⑤初相:.函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,.15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函數(shù)函數(shù)性質(zhì) y=cotx圖象定義域值域RR最值當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)時(shí);當(dāng)時(shí),.既無最大值也無最小值既無最大值也無最小值周期性 奇偶性奇函數(shù)偶函數(shù)奇函數(shù)奇函數(shù)單調(diào)性在上是增函數(shù);在上是減函數(shù).在上是增函數(shù);在上是減函數(shù).在上是增函數(shù).對稱性對稱中心對稱軸對稱中心對稱軸對稱中心無對稱軸對稱中心無對稱軸第二章平面向量16、向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒有方向的量.有向線段的三要素:起點(diǎn)、方向、長度.零向量:長度為的向量.單位向量:長度等于個(gè)單位的向量.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長度相等且方向相同的向量.17、向量加法運(yùn)算:=1\*GB2⑴三角形法則的特點(diǎn):首尾相連.=2\*GB2⑵平行四邊形法則的特點(diǎn):共起點(diǎn).=3\*GB2⑶三角形不等式:.=4\*GB2⑷運(yùn)算性質(zhì):=1\*GB3①交換律:;=2\*GB3②結(jié)合律:;=3\*GB3③.=5\*GB2⑸坐標(biāo)運(yùn)算:設(shè),,則.18、向量減法運(yùn)算:=1\*GB2⑴三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量.=2\*GB2⑵坐標(biāo)運(yùn)算:設(shè),,則.設(shè)、兩點(diǎn)的坐標(biāo)分別為,,則.19、向量數(shù)乘運(yùn)算:=1\*GB2⑴實(shí)數(shù)與向量的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作.=1\*GB3①;=2\*GB3②當(dāng)時(shí),的方向與的方向相同;當(dāng)時(shí),的方向與的方向相反;當(dāng)時(shí),.=2\*GB2⑵運(yùn)算律:=1\*GB3①;=2\*GB3②;=3\*GB3③.=3\*GB2⑶坐標(biāo)運(yùn)算:設(shè),則.20、向量共線定理:向量與共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使.設(shè),,其中,則當(dāng)且僅當(dāng)時(shí),向量、共線.21、平面向量基本定理:如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實(shí)數(shù)、,使.(不共線的向量、作為這一平面內(nèi)所有向量的一組基底)22、分點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)是線段上的一點(diǎn),、的坐標(biāo)分別是,,當(dāng)時(shí),點(diǎn)的坐標(biāo)是.(當(dāng)23、平面向量的數(shù)量積:=1\*GB2⑴.零向量與任一向量的數(shù)量積為.=2\*GB2⑵性質(zhì):設(shè)和都是非零向量,則=1\*GB3①.=2\*GB3②當(dāng)與同向時(shí),;當(dāng)與反向時(shí),;或.=3\*GB3③.=3\*GB2⑶運(yùn)算律:=1\*GB3①;=2\*GB3②;=3\*GB3③.=4\*GB2⑷坐標(biāo)運(yùn)算:設(shè)兩個(gè)非零向量,,則.若,則,或.設(shè),,則.設(shè)、都是非零向量,,,是與的夾角,則.⑶.平面的法向量的求法(待定系數(shù)法):①建立適當(dāng)?shù)淖鴺?biāo)系.②設(shè)平面的法向量為.③求出平面內(nèi)兩個(gè)不共線向量的坐標(biāo).④根據(jù)法向量定義建立方程組.⑤解方程組,取其中一組解,即得平面的法向量.(如圖)用向量方法判定空間中的平行關(guān)系⑴線線平行設(shè)直線的方向向量分別是,則要證明∥,只需證明∥,即.即:兩直線平行或重合兩直線的方向向量共線。

⑵線面平行①(法一)設(shè)直線的方向向量是,平面的法向量是,則要證明∥,只需證明,即.即:直線與平面平行直線的方向向量與該平面的法向量垂直且直線在平面外②(法二)要證明一條直線和一個(gè)平面平行,也可以在平面內(nèi)找一個(gè)向量與已知直線的方向向量是共線向量即可.⑶面面平行若平面的法向量為,平面的法向量為,要證∥,只需證∥,即證.即:兩平面平行或重合兩平面的法向量共線。

3、用向量方法判定空間的垂直關(guān)系

⑴線線垂直設(shè)直線的方向向量分別是,則要證明,只需證明,即.即:兩直線垂直兩直線的方向向量垂直。

⑵線面垂直①(法一)設(shè)直線的方向向量是,平面的法向量是,則要證明,只需證明∥,即.②(法二)設(shè)直線的方向向量是,平面內(nèi)的兩個(gè)相交向量分別為,若即:直線與平面垂直直線的方向向量與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論