初三數(shù)學知識點總結歸納初三數(shù)學知識點總結歸納八篇_第1頁
初三數(shù)學知識點總結歸納初三數(shù)學知識點總結歸納八篇_第2頁
初三數(shù)學知識點總結歸納初三數(shù)學知識點總結歸納八篇_第3頁
初三數(shù)學知識點總結歸納初三數(shù)學知識點總結歸納八篇_第4頁
初三數(shù)學知識點總結歸納初三數(shù)學知識點總結歸納八篇_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

初三數(shù)學知識點總結歸納初三數(shù)學知識點總結歸納精選八篇

篇一:初三數(shù)學上下冊知識點總結與重點難點總結初三數(shù)學知識整理與重點難點總結第21章二次根式知識框圖理解并掌握下列結論:(1)是非負數(shù);(2);(3);I.二次根式的定義和概念:1、定義:一般地,形如√?。╝≥0)的代數(shù)式叫做二次根式。當a>0時,√a表示a的算數(shù)平方根,√0=02、概念:式子√ā(a≥0)叫二次根式。√?。╝≥0)是一個非負數(shù)。II.二次根式√ā的簡單性質和幾何意義1)a≥0;√ā≥0[雙重非負性]2)(√?。2=a(a≥0)[任何一個非負數(shù)都可以寫成一個數(shù)的平方的形式]3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論。IV.二次根式的乘法和除法1運算法則√a·√b=√ab(a≥0,b≥0)-1-√a/b=√a/√b(a≥0,b>0)二數(shù)二次根之積,等于二數(shù)之積的二次根。2共軛因式如果兩個含有根式的代數(shù)式的積不再含有根式,那么這兩個代數(shù)式叫做共軛因式,也稱互為有理化根式。V.二次根式的加法和減法1同類二次根式一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式。2合并同類二次根式把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式。3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進行合并Ⅵ.二次根式的混合運算1確定運算順序2靈活運用運算定律3正確使用乘法公式4大多數(shù)分母有理化要及時5在有些簡便運算中也許可以約分,不要盲目有理化VII.分母有理化分母有理化有兩種方法I.分母是單項式如:√a/√b=√a×√b/√b×√b=√ab/bII.分母是多項式要利用平方差公式如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項式要利用平方差公式…………篇二:人教版初三數(shù)學知識點總結初三知識整理全套教科書包含了課程標準(實驗稿)規(guī)定的"數(shù)與代數(shù)""空間與圖形""統(tǒng)計與概率""實踐與綜合應用"四個領域的內容在體系結構的設計上力求反映這些內容之間的聯(lián)系與綜合使它們形成一個有機的整體九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容學習內容涉及到了《課程標準》的四個領域包含以下章節(jié):第21章二次根式第22章一元二次方程第23章旋轉第24章圓第25章概率初步本冊書內容分析如下:第21章二次根式學生已經(jīng)學過整式與分式知道用式子可以表示實際問題中的數(shù)量關系解決與數(shù)量關系有關的問題還會遇到二次根式"二次根式"一章就來認識這種式子探索它的性質掌握它的運算在這一章首先讓學生了解二次根式的概念并掌握以下重要結論:(1)是一個非負數(shù);(2)≥0);(3)(a≥0).注:關于二次根式的運算由于二次根式的乘除相對于二次根式的加減來說更易于掌握教科書先安排二次根式的乘除再安排二次根式的加減"二次根式的乘除"一節(jié)的內容有兩條發(fā)展的線索一條是用具體計算的例子體會二次根式乘除法則的合理性并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到(a≥0b≥0)(a≥0b>0)并運用它們進行二次根式的化簡"二次根式的加減"一節(jié)先安排二次根式加減的內容再安排二次根式加減乘除混合運算的內容…………篇三:初三數(shù)學知識點歸納初三(九年級)上冊數(shù)學知識點歸納全套教科書包含了課程標準(實驗稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計與概率”“實踐與綜合應用”四個領域的內容,在體系結構的設計上力求反映這些內容之間的聯(lián)系與綜合,使它們形成一個有機的整體。九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學習內容涉及到了《課程標準》的四個領域。包含以下章節(jié):第21章二次根式第22章一元二次方程第23章旋轉第24章圓第25章概率初步本冊書內容分析如下:第21章二次根式學生已經(jīng)學過整式與分式,知道用式子可以表示實際問題中的數(shù)量關系。解決與數(shù)量關系有關的問題還會遇到二次根式?!岸胃健币徽戮蛠碚J識這種式子,探索它的性質,掌握它的運算。在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結論:(1)(2)(3)是一個非負數(shù);≥0);(a≥0).注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減?!岸胃降某顺币还?jié)的內容有兩條發(fā)展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到(a≥0,b≥0),并運用它們進行二次根式的化簡。(a≥0,b>0),“二次根式的加減”一節(jié)先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節(jié)中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節(jié)內容?!模撼跞龜?shù)學上冊知識點復習梳理歸納初三數(shù)學上冊知識點復習梳理歸納第一單元二次根式1、二次根式式子a(a?0)叫做二次根式,二次根式必須滿足:含有二次根號“必須是非負數(shù)。2、最簡二次根式若二次根式滿足:被開方數(shù)的因數(shù)是整數(shù),因式是整式;被開方數(shù)中不含能開得盡方的因數(shù)或因式,這樣的二次根式叫做最簡二次根式。化二次根式為最簡二次根式的方法和步驟:(1)如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡。(2)如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來。3、同類二次根式幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。4、二次根式的性質(1)(a)2?a(a?0)a(a?0)(2)a?a??a(a?0)(3)ab?2”;被開方數(shù)aa?b(a?0,b?0)(4)aa(a?0,b?0)bb5、二次根式混合運算二次根式的混合運算與實數(shù)中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號)。第二單元一元二次方程一、一元二次方程1、一元二次方程含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式ax2?bx?c?0(a?0),它的特征是:等式左邊十一個關于未知數(shù)x的二次多項式,等式右邊是零,其中ax叫做二次項,a叫做二次項系數(shù);bx叫做一次項,b叫做一次項系數(shù);c叫做常數(shù)項。二、一元二次方程的解法1、直接開平方法利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如(x?a)2?b的一元二次方程。根據(jù)平方根的定義可知,x?a是b的平方根,當b?0時,x?a??b,x??a?b,當b<0時,方程沒有實數(shù)根?!澹壕拍昙墧?shù)學初中各種函數(shù)知識點總結初中各種函數(shù)知識點總結知識點一、平面直角坐標系1、平面直角坐標系在平面內畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。注意:x軸和y軸上的點,不屬于任何象限。2、點的坐標的概念點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數(shù)對,當a?b時,(a,b)和(b,a)是兩個不同點的坐標。知識點二、不同位置的點的坐標的特征1、各象限內點的坐標的特征點P(x,y)在第一象限?x?0,y?0點P(x,y)在第二象限?x?0,y?0點P(x,y)在第三象限?x?0,y?0點P(x,y)在第四象限?x?0,y?02、坐標軸上的點的特征點P(x,y)在x軸上?y?0,x為任意實數(shù)點P(x,y)在y軸上?x?0,y為任意實數(shù)點P(x,y)既在x軸上,又在y軸上?x,y同時為零,即點P坐標為(0,0)3、兩條坐標軸夾角平分線上點的坐標的特征點P(x,y)在第一、三象限夾角平分線上?x與y相等點P(x,y)在第二、四象限夾角平分線上?x與y互為相反數(shù)4、和坐標軸平行的直線上點的坐標的特征位于平行于x軸的直線上的各點的縱坐標相同。位于平行于y軸的直線上的各點的橫坐標相同。15、關于x軸、y軸或遠點對稱的點的坐標的特征點P與點p’關于x軸對稱?橫坐標相等,縱坐標互為相反數(shù)點P與點p’關于y軸對稱?縱坐標相等,橫坐標互為相反數(shù)…………篇六:初中數(shù)學一次函數(shù)知識點總結一次函數(shù)一次函數(shù):一次函數(shù)圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現(xiàn)。主要考察內容:①會畫一次函數(shù)的圖像,并掌握其性質。②會根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。③能用一次函數(shù)解決實際問題。④考察一ic函數(shù)與二元一次方程組,一元一次不等式的關系。突破方法:①正確理解掌握一次函數(shù)的概念,圖像和性質。②運用數(shù)學結合的思想解與一次函數(shù)圖像有關的問題。③掌握用待定系數(shù)法球一次函數(shù)解析式。④做一些綜合題的訓練,提高分析問題的能力。

函數(shù)性質:1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。2.當x=0時,b為函數(shù)在y軸上的點,坐標為(0,b)。3當b=0時(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。4.在兩個一次函數(shù)表達式中:當兩一次函數(shù)表達式中的k相同,b也相同時,兩一次函數(shù)圖像重合;當兩一次函數(shù)表達式中的k相同,b不相同時,兩一次函數(shù)圖像平行;當兩一次函數(shù)表達式中的k不相同,b不相同時,兩一次函數(shù)圖像相交;當兩一次函數(shù)表達式中的k不相同,b相同時,兩一次函數(shù)圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)

圖像性質1.作法與圖形:通過如下3個步驟:(1)列表.(2)描點;[一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。正比例函數(shù)y=kx(k≠0)的圖象是過坐標原點的一條直線,一般取(0,0)和(1,k)兩點?!撸?0xx年初中數(shù)學知識點中考總復習總結歸納第一章有理數(shù)考點一、實數(shù)的概念及分類(3分)1、實數(shù)的分類正有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)實數(shù)負有理數(shù)正無理數(shù)無限不循環(huán)小數(shù)負無理數(shù)2、無理數(shù)在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:(1)開方開不盡的數(shù),如7,2等;(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如(3)有特定結構的數(shù),如0.1010010001?等;(4)某些三角函數(shù),如sin60o等π+8等;3第二章整式的加減考點一、整式的有關概念(3分)1、代數(shù)式用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。2、單項式只含有數(shù)字與字母的積的代數(shù)式叫做單項式。注意:單項式是由系數(shù)、字母、字母的指數(shù)構成的,其中系數(shù)不能用帶分數(shù)表示,如?4ab,這種表示就是錯誤的,應寫成?132132ab。一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。如3?5a3b2c是6次單項式??键c二、多項式(11分)1、多項式幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。單項式和多項式統(tǒng)稱整式。用數(shù)值代替代數(shù)式中的字母,按照代數(shù)式指明的運算,計算出結果,叫做代數(shù)式的值。注意:(1)求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入。(2)求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入。2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。3、去括號法則(1)括號前是“+”,把括號和它前面的“+”號一起去掉,括號里各項都不變號。…………篇八:初中數(shù)學知識點歸納(順口溜)初中數(shù)學知識點歸納.有理數(shù)的加法運算同號兩數(shù)來相加,絕對值加不變號。異號相加大減小,大數(shù)決定和符號?;橄喾磾?shù)求和,結果是零須記好?!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。有理數(shù)的減法運算減正等于加負,減負等于加正。有理數(shù)的乘法運算符號法則同號得正異號負,一項為零積是零。合并同類項說起合并同類項,法則千萬不能忘。只求系數(shù)代數(shù)和,字母指數(shù)留原樣。去、添括號法則去括號或添括號,關鍵要看連接號。擴號前面是正號,去添括號不變號。括號前面是負號,去添括號都變號。解方程已知未知鬧分離,分離要靠移完成。移加變減減變加,移乘變除除變乘。平方差公式兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。積化和差變兩項,完全平方不是它

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論