下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第高考重要的一些數(shù)學(xué)公式
高考數(shù)學(xué)公式口訣第一部分
一、《集合與函數(shù)》
內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。
指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。
兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。
二、《三角函數(shù)》
三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點三角形;向下三角平方和,倒數(shù)關(guān)系是對角,
變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。
高考數(shù)學(xué)公式口訣第二部分
四、《數(shù)列》
等差等比兩數(shù)列,通項公式N項和。兩個有限求極限,四則運算順序換。
數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯位相消巧轉(zhuǎn)換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯(lián)想,猜測證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化:
首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復(fù)數(shù)》
虛數(shù)單位i一出,數(shù)集擴大到復(fù)數(shù)。一個復(fù)數(shù)一對數(shù),橫縱坐標(biāo)實虛部。
對應(yīng)復(fù)平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運算的實質(zhì),有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,
兩個不會為實數(shù),比較大小要不得。復(fù)數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。
圓的有關(guān)性質(zhì)
(1)垂徑定理:如果一條直線具備以下五個性質(zhì)中的-任意兩個性質(zhì):①經(jīng)過圓心;②垂直弦;③平分弦;④平分弦所對的劣弧;-⑤平分弦所對的優(yōu)弧,那么這條直線就具有另外三個性質(zhì).注:具備①,③時,弦不能是直徑.
(2)兩條平行弦所夾的弧相等.
(3)圓心角的度-數(shù)等于它所對的弧的度數(shù).
(4)一條弧所對的圓周角等于它所對的圓心角的一半.
(5)圓周-角等于它所對的弧的度數(shù)的一半.
(6)同弧或等-弧所對的圓周角相等.
(7)在同圓或等圓中,相等的圓周角所對的弧相等.
(8)90o的圓周角-所對的弦是直徑,反之,直徑所對的圓周角是90o,直徑是最長的弦.
(9)圓內(nèi)接四邊形的對角互補.
定理公式
1、直線
兩點距離、定比分點直線方程
|AB|=||
|P1P2|=
y-y1=k(x-x1)
y=kx+b
兩直線的位置關(guān)系夾角和距離
或k1=k2,且b1≠b2
l1與l2重合
或k1=k2且b1=b2
l1與l2相交
或k1≠k2
l2⊥l2
或k1k2=-1l1到l2的角
l1與l2的夾角
點到直線的距離
2.圓錐曲線
圓橢圓
標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2
圓心為(a,b),半徑為R
一般方程x2+y2+Dx+Ey+F=0
其中圓心為(),
半徑r
(1)用圓心到直線的距離d和圓的半徑r判斷或用判別式判斷直線與圓的位置關(guān)系
(2)兩圓的位置關(guān)系用圓心距d與半徑和與差判斷橢圓
焦點F1(-c,0),F(xiàn)2(c,0)
(b2=a2-c2)
離心率
準(zhǔn)線方程
焦半徑|MF1|=a+ex0,|MF2|=a-ex0
雙曲線拋物線
雙曲線
焦點F1(-c,0),F(xiàn)2(c,0)
(a,b0,b2=c2-a2)
離心
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年體育春季開學(xué)第一課
- 二零二五年度房地產(chǎn)買賣合同范本(含土地、配套設(shè)施、稅費及車位)3篇
- 國際山岳日介紹
- 二零二五年度房產(chǎn)交易平臺二手房按揭合同范本2篇
- 實驗室生物危害及生物安全安全培訓(xùn)課件
- 重慶市2024-2025學(xué)年高二上學(xué)期期末考試語文試卷(含答案)
- 公關(guān)部部門年終總結(jié)
- Unit 4 Never too old to learn Reading I 說課稿-2023-2024學(xué)年高中英語牛津譯林版(2020)選擇性必修第四冊
- 江西省上饒市2024-2025學(xué)年度第一學(xué)期七年級道德與法治上冊期末綠色評價試卷(含答案)
- 廣東省深圳市龍崗區(qū)2024-2025學(xué)年高三上學(xué)期期末質(zhì)量監(jiān)測歷史試題(含答案)
- 倉庫盤點培訓(xùn)資料
- 徐州市2023-2024學(xué)年八年級上學(xué)期期末地理試卷(含答案解析)
- GA 1809-2022城市供水系統(tǒng)反恐怖防范要求
- 新北師大版八年級下冊數(shù)學(xué)(全冊知識點考點梳理、重點題型分類鞏固練習(xí))(基礎(chǔ)版)(家教、補習(xí)、復(fù)習(xí)用)
- 公司崗位權(quán)責(zé)劃分表
- 電壓10kV及以下送配電系統(tǒng)調(diào)試報告
- 用合像水平儀測量直線誤差
- 北京市工傷保險實施細則
- 象棋老師崗位職責(zé)任職要求
- 教學(xué)改革計劃項目申請書模板
- 東神汽車售后服務(wù)手冊
評論
0/150
提交評論