版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州市南沙欖核第二中學2022年中考數學押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機取出一顆棋子,取得白色棋子的概率是,如再往盒中放進3顆黑色棋子,取得白色棋子的概率變?yōu)椋瑒t原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆2.如圖,將△ABC沿著DE剪成一個小三角形ADE和一個四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應是()A. B. C. D.3.用加減法解方程組時,若要求消去,則應()A. B. C. D.4.某機構調查顯示,深圳市20萬初中生中,沉迷于手機上網的初中生約有16000人,則這部分沉迷于手機上網的初中生數量,用科學記數法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人5.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數,則k值是()A.﹣1 B.±2 C.2 D.﹣26.已知二次函數,當自變量取時,其相應的函數值小于0,則下列結論正確的是()A.取時的函數值小于0B.取時的函數值大于0C.取時的函數值等于0D.取時函數值與0的大小關系不確定7.如圖,小明從A處出發(fā)沿北偏東60°方向行走至B處,又沿北偏西20°方向行走至C處,此時需把方向調整到與出發(fā)時一致,則方向的調整應是()A.右轉80° B.左轉80° C.右轉100° D.左轉100°8.關于的方程有實數根,則滿足()A. B.且 C.且 D.9.某車間20名工人日加工零件數如表所示:日加工零件數45678人數26543這些工人日加工零件數的眾數、中位數、平均數分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、610.現有兩根木棒,它們的長分別是20cm和30cm,若不改變木棒的長短,要釘成一個三角形木架,則應在下列四根木棒中選?。ǎ〢.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒11.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t512.已知拋物線y=x2+3向左平移2個單位,那么平移后的拋物線表達式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.太極揉推器是一種常見的健身器材.基本結構包括支架和轉盤,數學興趣小組的同學對某太極揉推器的部分數據進行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉盤的最低點F,N距離地面的高度差為_____cm.(結果保留根號)14.某一時刻,測得一根高1.5m的竹竿在陽光下的影長為2.5m.同時測得旗桿在陽光下的影長為30m,則旗桿的高為__________m.15.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.16.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.17.如圖,身高是1.6m的某同學直立于旗桿影子的頂端處,測得同一時刻該同學和旗桿的影子長分別為1.2m和9m.則旗桿的高度為________m.18.如圖,在正方形ABCD中,等邊三角形AEF的頂點E,F分別在邊BC和CD上,則∠AEB=__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結果都保留根號).20.(6分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.21.(6分)先化簡再求值:(a﹣)÷,其中a=1+,b=1﹣.22.(8分)“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產空調,已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元,求A、B兩種型號的空調的購買價各是多少元?23.(8分)(1)計算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡,再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.24.(10分)為了了解初一年級學生每學期參加綜合實踐活動的情況,某區(qū)教育行政部門隨機抽樣調查了部分初一學生一個學期參加綜合實踐活動的天數,并用得到的數據繪制了統(tǒng)計圖①和圖②,請根據圖中提供的信息,回答下列問題:(I)本次隨機抽樣調查的學生人數為,圖①中的m的值為;(II)求本次抽樣調查獲取的樣本數據的眾數、中位數和平均數;(III)若該區(qū)初一年級共有學生2500人,請估計該區(qū)初一年級這個學期參加綜合實踐活動的天數大于4天的學生人數.25.(10分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側),直線l與拋物線交于A,C兩點,其中點C的橫坐標為1.(1)求A,B兩點的坐標及直線AC的函數表達式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最?。咳舸嬖?,求出這個最小值及點M,N的坐標;若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.26.(12分)已知:二次函數滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數y=ax2+bx的解析式;(2)若當-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.27.(12分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AG?AB=36,tanB=,求DF的值
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:由題意得,解得:.故選B.2、C【解析】
利用相似三角形的性質即可判斷.【詳解】設AD=x,AE=y(tǒng),∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點睛】考查平行線的性質,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.3、C【解析】
利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應①×5+②×3,
故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.4、A【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】用科學記數法表示16000,應記作1.6×104,故選A.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、D【解析】
根據一元二次方程根與系數的關系列出方程求解即可.【詳解】設方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實數根互為相反數,
∴x1+x1,=-(k1-4)=0,解得k=±1,
當k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實數根,所以k=1舍去;
當k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實數根;
∴k=-1.
故選D.【點睛】本題考查的是根與系數的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.6、B【解析】
畫出函數圖象,利用圖象法解決問題即可;【詳解】由題意,函數的圖象為:∵拋物線的對稱軸x=,設拋物線與x軸交于點A、B,∴AB<1,∵x取m時,其相應的函數值小于0,∴觀察圖象可知,x=m-1在點A的左側,x=m-1時,y>0,故選B.【點睛】本題考查二次函數圖象上的點的坐標特征,解題的關鍵是學會利用函數圖象解決問題,體現了數形結合的思想.7、A【解析】
60°+20°=80°.由北偏西20°轉向北偏東60°,需要向右轉.故選A.8、A【解析】
分類討論:當a=5時,原方程變形一元一次方程,有一個實數解;當a≠5時,根據判別式的意義得到a≥1且a≠5時,方程有兩個實數根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當a=5時,原方程變形為-4x-1=0,解得x=-;當a≠5時,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時,方程有兩個實數根,所以a的取值范圍為a≥1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.也考查了一元二次方程的定義.9、D【解析】
5出現了6次,出現的次數最多,則眾數是5;把這些數從小到大排列,中位數是第10,11個數的平均數,則中位數是(6+6)÷2=6;平均數是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.10、B【解析】
設應選取的木棒長為x,再根據三角形的三邊關系求出x的取值范圍.進而可得出結論.【詳解】設應選取的木棒長為x,則30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故選B.【點睛】本題考查的是三角形的三邊關系,熟知三角形任意兩邊之和大于第三邊,任意兩邊差小于第三邊是解答此題的關鍵.11、D【解析】選項A,根據同底數冪的乘法可得原式=t10;選項B,不是同類項,不能合并;選項C,根據同底數冪的乘法可得原式=t7;選項D,根據同底數冪的乘法可得原式=t5,四個選項中只有選項D正確,故選D.12、A【解析】
結合向左平移的法則,即可得到答案.【詳解】解:將拋物線y=x2+3向左平移2個單位可得y=(x+2)2+3,故選A.【點睛】此類題目主要考查二次函數圖象的平移規(guī)律,解題的關鍵是要搞清已知函數解析式確定平移后的函數解析式,還是已知平移后的解析式求原函數解析式,然后根據圖象平移規(guī)律“左加右減、上加下減“進行解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10【解析】
作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個轉盤的最低點F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點睛】本題考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.14、1.【解析】分析:根據同一時刻物高與影長成比例,列出比例式再代入數據計算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點睛:本題考查了相似三角形在測量高度時的應用,解題時關鍵是找出相似的三角形,然后根據對應邊成比例列出方程,建立數學模型來解決問題.15、1【解析】根據題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.16、1.【解析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.【點睛】此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質.注意掌握線段的對應關系是解此題的關鍵.17、1【解析】試題分析:利用相似三角形的相似比,列出方程,通過解方程求出旗桿的高度即可.解:∵同一時刻物高與影長成正比例.設旗桿的高是xm.∴1.6:1.2=x:9∴x=1.即旗桿的高是1米.故答案為1.考點:相似三角形的應用.18、75【解析】因為△AEF是等邊三角形,所以∠EAF=60°,AE=AF,因為四邊形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【解析】試題分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個碼頭間的距離是()海里.考點:解直角三角形的應用-方向角問題.20、這個圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,設半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.21、原式=【解析】
括號內先通分進行分式的加減運算,然后再進行分式的乘除法運算,最后將數個代入進行計算即可.【詳解】原式===,當a=1+,b=1﹣時,原式==.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關鍵.22、A、B兩種型號的空調購買價分別為2120元、2320元【解析】試題分析:根據題意,設出A、B兩種型號的空調購買價分別為x元、y元,然后根據“已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元”,列出方程求解即可.試題解析:設A、B兩種型號的空調購買價分別為x元、y元,依題意得:解得:答:A、B兩種型號的空調購買價分別為2120元、2320元23、(1)6;(2)﹣(x+1),1.【解析】
(1)原式=3+1﹣2×+3=6(2)由題意可知:x2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x﹣1)÷=﹣(x+1)當x=﹣1時,x+1=0,分式無意義,當x=﹣2時,原式=124、(I)150、14;(II)眾數為3天、中位數為4天,平均數為3.5天;(III)700人【解析】
(I)根據1天的人數及其百分比可得總人數,總人數減去其它天數的人數即可得m的值;(II)根據眾數、中位數和平均數的定義計算可得;(III)用總人數乘以樣本中5天、6天的百分比之和可得.【詳解】解:(I)本次隨機抽樣調查的學生人數為18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案為150、14;(II)眾數為3天、中位數為第75、76個數據的平均數,即平均數為=4天,平均數為=3.5天;(III)估計該區(qū)初一年級這個學期參加綜合實踐活動的天數大于4天的學生有2500×(18%+10%)=700人.【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關鍵.25、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點坐標為F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).【解析】
(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點的坐標,根據兩點式求出直線AC的函數表達式;
(1)設P點的橫坐標為x(-1≤x≤1),求出P、E的坐標,用x表示出線段PE的長,求出PE的最大值,進而求出△ACE的面積最大值;
(3)根據D點關于PE的對稱點為點C(1,-3),點Q(0,-1)點關于x軸的對稱點為M(0,1),則四邊形DMNQ的周長最小,求出直線CM的解析式為y=-1x+1,進而求出最小值和點M,N的坐標;
(4)結合圖形,分兩類進行討論,①CF平行x軸,如圖1,此時可以求出F點兩個坐標;②CF不平行x軸,如題中的圖1,此時可以求出F點的兩個坐標.【詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點的橫坐標x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數解析式是(1)設P點的橫坐標為x(﹣1≤x≤1),則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點在E點的上方,∴當時,PE的最大值△ACE的面積最大值(3)D點關于PE的對稱點為點C(1,﹣3),點Q(0,﹣1)點關于x軸的對稱點為K(0,1),連接CK交直線PE于M點,交x軸于N點,可求直線CK的解析式為,此時四邊形DMNQ的周長最小,最小值求得M(1,﹣1),(4)存在如圖1,若AF∥CH,此時的D和H點重合,CD=1,則AF=1,于是可得F1(1,0),F1(﹣3,0),如圖1,根據點A和F的坐標中點和點C和點H的坐標中點相同,再根據|HA|=|CF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木材綜合利用技術研發(fā)合同樣本7篇
- 2025年加盟商店面維護協(xié)議
- 2025版巡游出租車特許經營合同修訂版五3篇
- 2025版家居建材銷售合同終止與綠色環(huán)保認證協(xié)議
- 2025年度船舶港口日常保潔與維護服務合同3篇
- 五氧化二釩項目評價分析報告
- 二零二五年度能源合同解除協(xié)議
- 二零二五年度出租車租賃合同司機休息區(qū)域與設施協(xié)議
- 二零二五年度海域使用權租賃及海洋資源綜合利用技術服務合同
- 二零二五年度股東變更后的董事會組成與授權協(xié)議
- 中國聯(lián)合網絡通信有限公司招聘筆試題庫2024
- 【社會工作介入精神障礙社區(qū)康復問題探究的文獻綜述5800字】
- 節(jié)前停工停產與節(jié)后復工復產安全注意事項課件
- 設備管理績效考核細則
- 中國人民銀行清算總中心直屬企業(yè)2023年招聘筆試上岸歷年典型考題與考點剖析附帶答案詳解
- (正式版)SJT 11449-2024 集中空調電子計費信息系統(tǒng)工程技術規(guī)范
- 人教版四年級上冊加減乘除四則混合運算300題及答案
- 合成生物學技術在生物制藥中的應用
- 消化系統(tǒng)疾病的負性情緒與心理護理
- 高考語文文學類閱讀分類訓練:戲劇類(含答案)
- 協(xié)會監(jiān)事會工作報告大全(12篇)
評論
0/150
提交評論