下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第2023吉林省中考數(shù)學(xué)考點歸納
吉林省中考數(shù)學(xué)考點歸納
1、圓的有關(guān)概念:
(1)、確定一個圓的要素是圓心和半徑。
(2)①連結(jié)圓上任意兩點的線段叫做弦。②經(jīng)過圓心的弦叫做直徑。③圓上任意兩點間的部分叫做圓弧,簡稱弧。④小于半圓周的圓弧叫做劣弧。⑤大于半圓周的圓弧叫做優(yōu)弧。⑥在同圓或等圓中,能夠互相重合的弧叫做等弧。⑦頂點在圓上,并且兩邊和圓相交的角叫圓周角。⑧經(jīng)過三角形三個頂點可以畫一個圓,并且只能畫一個,經(jīng)過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內(nèi)接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等于斜邊的一半。⑨與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓外切三角形,三角形的內(nèi)心就是三角形三條內(nèi)角平分線的交點。
2、圓的有關(guān)性質(zhì)
(1)定理在同圓或等圓中,如果圓心角相等,那么它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對的其余各組量都分別相等。
(2)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
(3)圓周角定理:一條弧所對的圓周角等于該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等于90。90的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
(4)切線的判定與性質(zhì):判定定理:經(jīng)過半徑的外端且垂直與這條半徑的直線是圓的切線。性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點;經(jīng)過切點切垂直于切線的直線必經(jīng)過圓心。
(5)定理:不在同一條直線上的三個點確定一個圓。
(6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。
(7)圓內(nèi)接四邊形對角互補,一個外角等于內(nèi)對角;圓外切四邊形對邊和相等;
(8)弦切角定理:弦切角等于它所它所夾弧對的圓周角。
(9)和圓有關(guān)的比例線段:相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。
(10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。
中考數(shù)學(xué)考點歸納
一、重要概念
分類:
1.代數(shù)式與有理式
用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨
的一個數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算并且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運算的整式叫做單項式。(數(shù)字與字母的積-包括單獨的一個數(shù)或字母)
幾個單項式的和,叫做多項式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進(jìn)行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,
=x,=│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看
5.同類項及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
中考數(shù)學(xué)考點
一、重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))
二、計算方法
1.樣本平均數(shù):⑴;⑵若,,…,,則(a-常數(shù),,,…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準(zhǔn)確。
2.樣本方差:⑴;⑵若,,…,,則(a-接近、、…、的平均數(shù)的較整的常數(shù));若、、…、較小較整,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《酒店消防培訓(xùn)》課件2
- 孕期肛門墜脹的健康宣教
- 鼻惡性肉芽腫的健康宣教
- 《計算機(jī)輔助制》課件
- 白塞氏病的健康宣教
- 睡眠呼吸暫停綜合征的健康宣教
- 孕期室性早搏的健康宣教
- 激素依賴性皮炎的臨床護(hù)理
- 妊娠合并淋巴瘤的健康宣教
- 急性喉氣管炎的健康宣教
- 潑水節(jié)卡通兒童教學(xué)課件PPT模板
- 智能控制技術(shù)專業(yè)申報材料
- 正丁烷的理化性質(zhì)及危險特性表
- DB36T 1477-2021碳普惠平臺運營管理規(guī)范
- 黑布林名著閱讀漁夫和他的靈魂及練習(xí)(含答案)
- 天圖可視門鈴
- 施工總承包單位資格報審表(共2頁)
- 小升初個人簡歷表
- 政府采購驗收報告表
- 腦梗死標(biāo)準(zhǔn)病歷、病程記錄、出院記錄文本
- 星巴克案例分析
評論
0/150
提交評論