![剪切力環(huán)境下的血管平滑肌細(xì)胞圖像分割技術(shù)研究-英文-解讀_第1頁](http://file4.renrendoc.com/view/0fae1fb704691f3a1ba91a1489ddaa9b/0fae1fb704691f3a1ba91a1489ddaa9b1.gif)
![剪切力環(huán)境下的血管平滑肌細(xì)胞圖像分割技術(shù)研究-英文-解讀_第2頁](http://file4.renrendoc.com/view/0fae1fb704691f3a1ba91a1489ddaa9b/0fae1fb704691f3a1ba91a1489ddaa9b2.gif)
![剪切力環(huán)境下的血管平滑肌細(xì)胞圖像分割技術(shù)研究-英文-解讀_第3頁](http://file4.renrendoc.com/view/0fae1fb704691f3a1ba91a1489ddaa9b/0fae1fb704691f3a1ba91a1489ddaa9b3.gif)
![剪切力環(huán)境下的血管平滑肌細(xì)胞圖像分割技術(shù)研究-英文-解讀_第4頁](http://file4.renrendoc.com/view/0fae1fb704691f3a1ba91a1489ddaa9b/0fae1fb704691f3a1ba91a1489ddaa9b4.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2007年4月第44卷第2期四川高校學(xué)報(自然科學(xué)版)JournalofSichuanUniversity(NaturalScienceEdition)Apr.2007Vol.44No.2文章編號:049026756(2007)0220284205剪切力環(huán)境下的血管平滑肌細(xì)胞圖像分割技術(shù)探討李曉寧1,樊瑜波2,3(1.四川師范高校計算機(jī)科學(xué)學(xué)院,成都610068;2.四川高校建筑與環(huán)境學(xué)院生物力學(xué)所,成都610064;3.北京航空航天高校生物工程系,北京100083)摘要:定量分析血管平滑肌細(xì)胞VSMCs(VascularSmoothMuscleCells)在剪切力作用下的形態(tài)改變有助于理解VSMCs的生長機(jī)制以及病理學(xué)探討.圖像分割在圖像分析中扮演著重要角色,但同時也是圖像處理流程中最困難的步驟.針對培育在平板流室中的VSMCs相互交疊的細(xì)胞圖像,作者首先分析了這類細(xì)胞圖像的特征,隨后提出了一種具有四個步驟的圖像分割方法,分別是圖像預(yù)處理、照明校正、數(shù)學(xué)形態(tài)學(xué)重建和分水嶺轉(zhuǎn)換.試驗結(jié)果證明,根據(jù)這種方法分割細(xì)胞圖像,取得了較好的效果.關(guān)鍵詞:定量分析;分水嶺轉(zhuǎn)換;數(shù)學(xué)形態(tài)學(xué);圖像分割中圖分類號:TP751文獻(xiàn)標(biāo)識碼:ACellsegmentationofvascularsmoothmusclecellsundershearstressusingimageprocessingLIXiao2ning,FANYu2bo12,3(1.CollegeofComputerScience,SichuanNormalUniversity,Chengdu610068,China;2.BiomechanicalEngineeringLaboratory,SichuanUniversity,Chengdu610064,China;3.BioengineeringDepartment,BeihangUniversity,Beijing100083,China)Abstract:Quantitativelyanalysisofthemorphologicalresponsetoshearstressonvascularsmoothmusclecells(VSMCs)willfacilitateunderstandingthegrowthmechanismandpathologyofVSMCs.Imagesegmentationplaysakeyroleinimageanalysisandisalsothemostdifficultstepinimageprocessingpipeline.Inthispaper,firstly,thecharacteristicsoftheimagesofVSMCsculturedintheparallelplatechamberisanalyzedindetail,thenonesegmentationstrategywhichhasfourstepsbasedonwatershedoperatorsisproposed.Imageprepro2cessing,illuminationcorrecting,mathematicalmorphologicalreconstruction,watershedtransformationareimplementedaccordingtothesetsequence.Theresultshowsabetterseparationcellsfrombackgroundcanbeachievedbyusingthismethod.Attheendtheresultofimagesegmentationisanalyzedanddiscussed.Keywords:quantitativelyanalysis,watershed,mathematicalmorphology,imagesegmentation收稿日期:基金項目:作者簡介:通訊作者:2006210229國家自然科學(xué)基金(10527001,10672105);北京R&D項目(H060920051030);四川師范高校基金李曉寧(1972-),男,博士,主要探討方向為醫(yī)學(xué)圖像處理.樊瑜波.E2mail:ybfan@yahoo第2期李曉寧等:剪切力環(huán)境下的血管平滑肌細(xì)胞圖像分割技術(shù)探討2851IntroductionCellularmechanicsisafocusofnowadaystissueengineeringstudy.Investigationsintotheeffectsofflowonvascularsmoothmusclecells(VSMCs)aremotivatedbythepossibleinfluenceofflowinvascu2larbiologyandpathobiology.Todeterminetheex2tentoffloweffects,studiesinwhichthefluidme2chanicconditionscanbesystematicallyvariedareneeded.Invivostudyisdifficulttoquantitativelydefinethedetailedcharacteristicsofthehemody2namicenvironment.Exertingmechanicalforcethroughvariouskindsofmechanicsdevicesonlivingcellsinvitroisthemainmethodofcellmechanicsnow.Mechanicalstimuli,suchasstrainandfluidshearstress,arebelievedtobekeyfactorsinregu2latingcardiovasculartissuegrowthandremodelingduringdevelopmentandindiseasestates.Shearstressesonvascularsmoothmusclecellsduetobloodfluidflowplayavitalroleinregulatingtheirmor2phology,structure,growthrateandfunctions.Thechangeinmorphologyisaninstinctiveresponsetobiomechanicalenvironmentandisanindicatorforthefunctionalchangesinthecells.Quantitativelyanalyzingcellmotilityandmorphodynamicproper2tiesfacilitatesunderstandingtherelationsbetweenmechanicalstimuliandmechanismsofcellpathologi2calchanges.Itisnecessarytobuildadigitalimageprocessingsystemwiththeaidofelectronictech2nologiesandimageprocessingforthistarget.Howtoexactlyandaccuratelysegmentcellsfromimagesisthemajorproblemwiththeimageprocessingsys2tem.Imagesegmentationisoneofthehotspotsanddifficultstepofimageprocessingtechnology.Uptonowthousandsofmethodsofimagesegmentationhavebeenpresented.Butunfortunatelythereisnomethodappreciatedforeachkindofimagesegmen2tationproblems.Althoughsomealgorithmsarepro2posedfordyeingandfixingcellimagesegmentationtheyareunsuitablefortheimagesofbiologicalactivecells.Intheexperimentsofcellularmechanicsthematerialsoftenmustbekeptaliveandcouldnotbeendyed.Livingcellsaretransparentandtheirimagepropertiesvarywithexperimentalconditions.Theseallinducethedifficultiesfortheimagesegmenta2tion.Sodevelopingthesegmentationstudiesfortheimagesoflivingcellsculturedinthemechanicalen2vironmentisveryimportant.Thisarticleexploresthetechnologiesofimagesegmentationofvascularsmoothmusclecells(VSMCs).2Materialsandmethod2.1CellcultureVascularsmoothmusclecellswereobtainedfromrataortaaccordingtoageneralmethodusedinmedicine.Aninnovativeparallelplateflowchambersystemisusedtoculturethesecollectedcellsandtodeliverquasi2physiologicalpulsatileflowfieldforcul2turedvascularcells[1].2.2ImageacquiringsystemImageacquiringsystemconsistsofaphasecon2trastinvertedmicroscope(OlympusIX70,Japan),aprofessionalmicroscopyCCD(PixeraPro150ES,USA)andapersonalcomputer.AnalogcellimagesobservedbyOlympusIX70microscopeareconvertedtodigitalimagesthroughthevideooutputcompo2nent,andthesingleporttube(IX2SPT,Japan),aCmountandPixera150ESdigitalCCD.Atlastimagesarecapturedintocomputersystems.DiagramofourimageacquiringsystemisshownasFig.1.Fig.1DiagramoftheimageacquiringsystembasedonprofessionalmicroscopyCCD2.3CharacteristicsofvascularsmoothmusclecellimagesBeforesegmentationstrategyisdetermined,studyingthecharacteristicsofcellimagesisneces2sary.Generally,cellsimagespresentintwoclassicalmodes.Oneisoverlappedandtheotherisnon2over2lapped.Fornon2overlappedcellsimage,onemethod286四川高校學(xué)報(自然科學(xué)版)第44卷isintroducedinouranotherpaper[2].Asfortypicaloverlappedcellsimages,thereareseveralnotableandcommoncharacteristics.(1)Fromthewholeimage,thecontrastofintensitiesbetweenthecellsareaandthebackgroundislow.Althoughtherearesomehalationbetweencellsandbackground,thein2tensitiesofhalationisnotconstantandtheshapeofhalationisnotregular.(2)Theboundariesofthecellsmaybeextremelydifficulttodefineduetothevariationsofcellmorphology.(3)Manyholeslieinthebodyofcell.Andsotheintensitiesofsomeareasofcellbodyareidenticaltothoseofbackground.(4)Cellsaregrowinginoverlappingmode.Andthisconducesenormouslyimpedimentforseparatingcellsfromtheimages.2.4SegmentationStrategyObviously,itisimpossibletoaccuratelydistin2guishthecellboundaryfromthebackgroundonlybysimplemethods.Wementionthatwatershedisuse2fultoseparateoverlappingobjectsfromthescene.Sowedevelopthispipeline(Fig.2)tocompletethesegmentationtaskasfollows.Fig.2Illustrationoftheappliedimageprocessingpipeline2.4.1ImagepreprocessingInputimageisfirstlyenhancedbyaself2multiplemethod.TheRGBval2uesofeachpixelaremultipliedbythemselvesindi2viduallyandtheproductsarerespectivelynormalizedwithintherangefrom0to255.Thenormalizedval2ueisthenewintensityofthepixel.Thisprocedureisdonepixelbypixelandthengreytransformationisusedforeachpixeloftheconsequentimage.ThegrayscaleimageisshowninFig.4(a).2.4.2CorrectinginhomogeneousilluminationAlargenumberofexperimentfactorscancauselight2ingtobeeven,soinhomogeneousilluminationisacommonprobleminquantitativemicroscopy.Addi2tiveilluminationinfluencescanbenormalizedbyre2movinglocalmeansorutilizingderivativesforobjectdetecting[3].However,inthecaseofdiascopicmi2crographsthereisamultiplicationrelationshipbe2tweenthemainlyhigh2frequencycellobjectinforma2tionandratherlow2frequencyvariationsofillumina2tion.Logarithmicimagemodelissuitableforremov2ingmultiplicativeilluminationcomponents.Thisre2lationcanbeexpressedasF(x,y)=(g-A(x,y)3I(x,y)WheretheimagefunctionF(x,y)isregardedastheintensityoflightpassingthroughalightab2sorbingsample.A(x,y)andI(x,y)denotetheabsorptionandmicroscopeillumination,respective2ly.Theconstantgrepresentsthemaximumdigitalintensityvalue,whichis255for82bitimages.Inthelogarithmicdomain,itcanbedescribedasA(x,y)=g-exp(logF(x,y))-log(I(x,y))AccordingtotheworkofVolkerMetzleretc.[4],morphologicalilluminationcorrectionhasmanyadvantagesoverlinearlow2passfiltering.TheirmethodillustratedinFig.3isusedtocorrecttheinhomogeneousilluminationwedealwithandgoodresultisobtained.Onedifferencefromtheirmethodsisthesizeofstructureelementthatweadoptinmorphologicalreconstructionstep.Wehavementionedthatinourcapturingconditionsthesizeofcellbodyisalwayssmallerthan50pixels,soweFig.3Flowchartoftheilluminationbymorphologicalmethod第2期李曉寧等:剪切力環(huán)境下的血管平滑肌細(xì)胞圖像分割技術(shù)探討287Fig.4Resultimages(a)Graytransformation,(b)Illuminationcorrectionbymorpho2logicalmethods,(c)Morphologicalreconstruction,(d)Distancetransformationfor(c),(e)Markerimagebydomeextraction(h=4),(f)Overlayingmarkerimageondistanceimageerodetheimageusingstructureelementwhichsizeis25pixelsandconsequentlythecellularpixelinfor2mationiserased.Thenwereconstructtheimagebygeodesicdilationandcangetanimageconsistingofmostbackgroundinformation.Ifwereducetheo2riginalimagewiththisconsequentlyone,wecanob2tainanimagethatonlyincludescellbodies.Theob2tainedimageisshowninFig.4(b).AsshowninFig.4(b),althoughcellbodiesareseparatefrombackground,therearesomeback2groundareasarealsoretainedwhichisnotwanted.Soweutilizeanothermorphologicalreconstructionoperatortoeraseallthebackgroundareas.Differentfromlaststep,thisreconstructionoperatorisappliedtorestorecellbodyinformationandtogetridofbackgroundcomponentornoise.Becausecellsareconjointtogetherandbackgroundareaornoiseisin2solate,wecanerodetheimagewithlargestructureelementandtheobtainedimageislookedasmakerimagewhichsignallthecellareas.ReconstructiontheimageshowninFig.4(b)usingthismakerim2age,canclearupallthebackgroundandnoise.TheobtainedimageisshowninFig.4(c).Inthisimageonlycellareasarepresented.2.4.3WatershedtransformationAlthoughthebackgroundandnoisearealleliminated,cellsareoverlappedanditisnecessarytoseparatethemfromeachother.Watershedtransformationiseffectiveforsolvingthiskindofproblems,butinfact,thebrutalcomputationofwatershedsdoesnotconstituteagoodsegmentationmethod.Indeedthesimplecom2putationofanimage’swatershedsmostlyresultsinanover2segmentation.,i.e.,thecorrectcontourslostinamassofirrelevantones.Inordertogetridofthisover2segmentation[5],onemustmaketwopreparations.Oneistransformingoriginalimagetogradientoneordistanceone,whichwillbeinputimageofwatershed.Weusedistanceimagethoughdistancetransformationasinputimageofwater2shed.ThecorrespondingdistanceimageisshowninFig.4(d).Theotherisextractingmakerpointswhichsignobjectstobedissected.Universallyonemakerpointindexesoneobject.Onehastousetheknowledgeavailableontheproblemtodesignaro2bustalgorithmforextractingmarkersofdifferentre2gionstobesegmented.Inthispaper[6],h2dometransformationispresentedanditisverifiedthath2dometransformationcanextractlightstructureswithoutinvolvinganysizeorshapecriterion.Theonlyparameter(h)isrelatedtotheheightofthesestructures.Wedesignadometransformationwhichparameter(h)isequalto4andutilizeittogetmarkerpointsfromdistanceimage.Aftersuperpos2ingthemakerimage(Fig.4(e)withFig.4(d)andthenreversetheconsequentimagewecangetimageasshowninFig.4(f).Watershedoperatorisappliedtothisimage(asFig.4(f)).TheresultisshownFig.5(a).3ResultsanddiscussionAsshowninFig.5(a),thesegmentationlinesarepresentedinmanyconjunctionofcellbound2aries.Wecanlabelthesegmentedimageandgetthecontoursofcellbodyusingotherimageprocessingtechniques.Hence,quantitativeanalysiscanbesuc2ceeded.288四川高校學(xué)報(自然科學(xué)版)第44卷Fig.5Resultsofwatershedsegmentationwithdifferentmakerimages(a)h=4;(b)h=3;(c)h=5Asawhole,thelocationsofsegmentationlinesarecoincidentwiththeintuitionofthehumaneye2whendomeheightequalsto4.Butsomewhereseg2mentationlineslocateincongruously.Becausetheaccurateofwatershedseparationmethodseriouslydependsonthemakerimage,wetriedthreeheightsofdomewhichareparameterh=3,4,5,respec2tively.TheresultsareshowninFig.5(b),Fig.5(a),Fig.5(c).Itisevidentthatover2segmentationispresentedath=3andsomecellarenottotallysepara
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Trilysine-TFA-生命科學(xué)試劑-MCE-4187
- KIF18A-IN-15-生命科學(xué)試劑-MCE-5317
- 4-4-Dimethoxyoctafluorobiphenyl-生命科學(xué)試劑-MCE-5198
- 1-3-Dinervonoyl-glycerol-生命科學(xué)試劑-MCE-1243
- 2025年度特色民宿體驗住宿協(xié)議
- 二零二五年度消防設(shè)備定制設(shè)計與銷售合同
- 二零二五年度農(nóng)產(chǎn)品線上線下一體化購銷合同標(biāo)準(zhǔn)
- 施工現(xiàn)場施工防傳染病傳播制度
- 個人兼職用工合同模板
- 鄉(xiāng)村別墅租賃合同樣本
- 《奧特萊斯業(yè)態(tài)淺析》課件
- 2022年湖南省公務(wù)員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- 國家安全教育課程教學(xué)大綱分享
- 養(yǎng)殖場獸醫(yī)服務(wù)合同
- 電氣工程及其自動化基礎(chǔ)知識單選題100道及答案解析
- HR六大板塊+三支柱體系
- 慢性病患者門診身份管理方案
- 2025年高考英語一輪復(fù)習(xí)講義(新高考)第2部分語法第23講狀語從句(練習(xí))(學(xué)生版+解析)
- 連鑄工職業(yè)技能大賽考試題庫-上(單選、多選題)
- 2024年全國統(tǒng)一高考數(shù)學(xué)試卷(新高考Ⅱ)含答案
- 十七個崗位安全操作規(guī)程手冊
評論
0/150
提交評論