版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021八年級(jí)數(shù)學(xué)復(fù)習(xí)教案
課堂教學(xué)是一個(gè)不斷運(yùn)動(dòng)變化的過(guò)程,我們?cè)谧珜?xiě)教學(xué)設(shè)計(jì)時(shí)并
不可能把實(shí)際教學(xué)過(guò)程中可能會(huì)遇到的各種情況都考慮得那么精準(zhǔn),
課堂上總會(huì)或多或少地出現(xiàn)這樣或那樣的突發(fā)性問(wèn)題。今天在這里整
理了一些2021最新八年級(jí)數(shù)學(xué)復(fù)習(xí)教案,我們一起來(lái)看看吧!
2021最新八年級(jí)數(shù)學(xué)復(fù)習(xí)教案1
一、指導(dǎo)思想
通過(guò)數(shù)學(xué)課的教學(xué),使學(xué)生切實(shí)學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)
習(xí)現(xiàn)代化科學(xué)技術(shù)所必需的數(shù)學(xué)基本知識(shí)和基本技能;努力培養(yǎng)學(xué)生
的運(yùn)算能力、邏輯思維能力,以及分析問(wèn)題和解決問(wèn)題的能力。
二、學(xué)情分析
八年級(jí)是初中學(xué)習(xí)過(guò)程中的關(guān)鍵時(shí)期,學(xué)生基礎(chǔ)的好壞,直接影
響到將來(lái)是否能升學(xué)。八(1)班、(3)班,兩班比較,一班優(yōu)生稍多一些,
但后進(jìn)面卻較大,學(xué)生非?;钴S,有少數(shù)學(xué)生不上進(jìn),思維不緊跟老
師。三班學(xué)生單純,有少數(shù)同學(xué)基礎(chǔ)特差,問(wèn)題較嚴(yán)重。要在本期獲
得理想成績(jī),老師和學(xué)生都要付出努力,查漏補(bǔ)缺,充分發(fā)揮學(xué)生是
學(xué)習(xí)的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
三、教材分析
第十一章一次函數(shù)通過(guò)對(duì)變量的考察,體會(huì)函數(shù)的概念,并進(jìn)一
步研究其中最為簡(jiǎn)單的一種函數(shù)——一次函數(shù)。了解函數(shù)的有關(guān)性質(zhì)
和研究方法,并初步形成利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
在教材中,通過(guò)體現(xiàn)“問(wèn)題情境——建立數(shù)學(xué)模型——概念、規(guī)律、
應(yīng)用與拓展”的模式,讓學(xué)生從實(shí)際問(wèn)題情境中抽象出函數(shù)以及一次
函數(shù)的概念,并進(jìn)行探索一次函數(shù)及其圖象的性質(zhì),最后利用一次函
數(shù)及其圖象解決有關(guān)現(xiàn)實(shí)問(wèn)題;同時(shí)在教學(xué)順序上,將正比例函數(shù)納
1
入一次函數(shù)的研究中去。教材注意新舊知識(shí)的比較與聯(lián)系,如在教材
中,加強(qiáng)了一次函數(shù)與一次方程(組)、一次不等式的聯(lián)系等。
第十二章數(shù)據(jù)的描述通過(guò)對(duì)實(shí)際問(wèn)題的討論,使學(xué)生體會(huì)數(shù)據(jù)的
作用,更好地理解數(shù)據(jù)表達(dá)的信息,發(fā)展數(shù)感和統(tǒng)計(jì)觀念,為了更好
地理解較大的數(shù)據(jù)信息,本單元首先安排了有關(guān)大數(shù)的感受與表示的
內(nèi)容,重點(diǎn)是讓學(xué)生運(yùn)用身邊熟悉的事物,從多種角度對(duì)大數(shù)進(jìn)行估
計(jì),對(duì)于所收集的數(shù)據(jù),還要清晰、有效的進(jìn)行展示,以盡可能的獲
取有用的信息。教材安排了扇形統(tǒng)計(jì)圖、條形圖、折線圖、直方圖等
的認(rèn)識(shí)與制作,不同的統(tǒng)計(jì)圖表的選擇等內(nèi)容。
第十三章全等三角形主要介紹了三角形全等的性質(zhì)和判定方法
及直角三角形全等的特殊條件。更多的注重學(xué)生推理意識(shí)的建立和對(duì)
推理過(guò)程的理解,學(xué)生在直觀認(rèn)識(shí)和簡(jiǎn)單說(shuō)明理由的基礎(chǔ)上,從幾個(gè)
基本事實(shí)出發(fā),比較嚴(yán)格地證明全等三角形的一些性質(zhì),探索三角形
全等的條件。
第十四章軸對(duì)稱立足于已有的生活經(jīng)驗(yàn)和初步的數(shù)學(xué)活動(dòng)經(jīng)歷,
從觀察生活中的軸對(duì)稱現(xiàn)象開(kāi)始,從整體的角度直觀認(rèn)識(shí)并概括出軸
對(duì)稱的特征;通過(guò)逐步分析角、線段、等腰三角形等簡(jiǎn)單的軸對(duì)稱圖形,
引入等腰三角形的性質(zhì)和判定的概念。
第十五章整式在形式上力求突出:整式及整式運(yùn)算產(chǎn)生的實(shí)際背
景————使學(xué)生經(jīng)歷實(shí)際問(wèn)題“符號(hào)化”的過(guò)程,發(fā)展符號(hào)感;有關(guān)
運(yùn)算法則的探索過(guò)程————為探索有關(guān)運(yùn)算法則設(shè)置了歸納、類比
等活動(dòng);對(duì)算理的理解和基本運(yùn)算技能的掌握————設(shè)置恰當(dāng)數(shù)量
和難度的符號(hào)運(yùn)算,同時(shí)要求學(xué)生說(shuō)明運(yùn)算的根據(jù)。
四、教學(xué)措施
1、課堂內(nèi)講授與練習(xí)相結(jié)合,及時(shí)根據(jù)反饋信息,掃除學(xué)習(xí)中
2
的障礙點(diǎn)。
2、認(rèn)真?zhèn)湔n、精心授課,抓緊課堂四十五分鐘,努力提高教學(xué)
效果。
3、抓住關(guān)鍵、分散難點(diǎn)、突出重點(diǎn),在培養(yǎng)學(xué)生能力上下功夫。
4、不斷改進(jìn)教學(xué)方法,提高自身業(yè)務(wù)素養(yǎng)。
5、教學(xué)中注重自主學(xué)習(xí)、合作學(xué)習(xí)、探究學(xué)習(xí)。
2021最新八年級(jí)數(shù)學(xué)復(fù)習(xí)教案2
教學(xué)目的
1.使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角
度。
2.熟識(shí)等邊三角形的性質(zhì)及判定.
2.通過(guò)例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的
方法。
教學(xué)重點(diǎn):等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn):簡(jiǎn)潔的邏輯推理。
教學(xué)過(guò)程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱“等邊對(duì)等角”。把等
腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與
點(diǎn)
C重合,線段BD與CD也重合,所以∠B=∠C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重
合,簡(jiǎn)稱“三線合一”。由于AD為等腰三角形的對(duì)稱軸,所以BD=
CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠
3
ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。
2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),
三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請(qǐng)同學(xué)們畫(huà)一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),
并提出猜想。
2.你能否用已知的知識(shí),通過(guò)推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性
質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠
C=60°。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個(gè)角都等于60°。
等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30°,求∠
1和∠ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為
BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分
線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,
∠BAC可求,所以∠1可求。
問(wèn)題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰
三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果
是否一樣?
4
問(wèn)題2:求∠1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對(duì)的打“√”,錯(cuò)的打“×”。
a.等腰三角形的角平分線,中線和高互相重合()
b.有一個(gè)角是60°的等腰三角形,其它兩個(gè)內(nèi)角也為60°()
2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且
∠2=25°,求∠ADB和∠B的度數(shù)。
3.P54練習(xí)1、2。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為
60°?!叭€合一”性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,
其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。
五、作業(yè):1.課本P57第7,9題。
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠
CBD,∠BOE,∠BOC,∠EOD的度數(shù)。
2021最新八年級(jí)數(shù)學(xué)復(fù)習(xí)教案3
教學(xué)目標(biāo)
1.掌握等邊三角形的性質(zhì)和判定方法.2.培養(yǎng)分析問(wèn)題、解決問(wèn)題
的能力.
教學(xué)重點(diǎn):等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn):等邊三角形性質(zhì)的應(yīng)用
教學(xué)過(guò)程
I創(chuàng)設(shè)情境,提出問(wèn)題
回顧上節(jié)課講過(guò)的等邊三角形的有關(guān)知識(shí)
1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.
5
2.等邊三角形每一個(gè)角相等,都等于60°
3.三個(gè)角都相等的三角形是等邊三角形.
4.有一個(gè)角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等
邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
③過(guò)邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2.已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且
PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是
60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外
角性質(zhì)即可推得∠PAB=30°.
3.P56頁(yè)練習(xí)1、2
III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件
V布置作業(yè):1.P58頁(yè)習(xí)題12.3第ll題.
2.已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的
任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?
2021最新八年級(jí)數(shù)學(xué)復(fù)習(xí)教案4
教學(xué)目標(biāo)
1.等腰三角形的概念.2.等腰三角形的性質(zhì).3.等腰三角形的概念
及性質(zhì)的應(yīng)用.
教學(xué)重點(diǎn):1.等腰三角形的概念及性質(zhì).2.等腰三角形性質(zhì)的應(yīng)
6
用.
教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.
教學(xué)過(guò)程
Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境
在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),
并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能
夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱
的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形.來(lái)研究:①三角形是軸對(duì)稱
圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?
有的三角形是軸對(duì)稱圖形,有的三角形不是.
問(wèn)題:那什么樣的三角形是軸對(duì)稱圖形?
滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形
沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形.
我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角
形.
Ⅱ.導(dǎo)入新課:要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形.
作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直
線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相
等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與
腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃?,注明它的腰、?/p>
邊、頂角和底角.
思考:
1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.
2.等腰三角形的兩底角有什么關(guān)系?
7
3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上
的高所在的直線呢?
結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所
在的直線.因?yàn)榈妊切蔚膬裳嗟?,所以把這兩條腰重合對(duì)折三
角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所
在的直線.
要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并
看它的兩個(gè)底角有什么關(guān)系.
沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,
由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的
平分線既是底邊上的中線,也是底邊上的高.
由此可以得到等腰三角形的性質(zhì):
1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”).
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重
合(通常稱作“三線合一”).
由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)
稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性
質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程).
如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因
為
所以△BAD≌△CAD.
8
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,
求:△ABC各角的度數(shù).
分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角.
把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來(lái)表示,這樣過(guò)
程就更簡(jiǎn)捷.
解:因?yàn)锳B=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等邊對(duì)等角).
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[師]下面我們通過(guò)練習(xí)來(lái)鞏固這節(jié)課所學(xué)的知識(shí).
Ⅲ.隨堂練習(xí):1.課本P51練習(xí)1、2、3.2.閱讀課本P49~P51,
然后小結(jié).
Ⅳ.課時(shí)小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的
應(yīng)用.等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等
腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊
上的中線,又是底邊上的高.
9
我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且
能夠靈活應(yīng)用它們.
Ⅴ.作業(yè):課本P56習(xí)題12.3第1、2、3、4題.
板書(shū)設(shè)計(jì)
12.3.1.1等腰三角形
一、設(shè)計(jì)方案作出一個(gè)等腰三角形
二、等腰三角形性質(zhì):1.等邊對(duì)等角2.三線合一
2021最新八年級(jí)數(shù)學(xué)復(fù)習(xí)教案5
1、教材分析
(1)知識(shí)結(jié)構(gòu)
(2)重點(diǎn)、難點(diǎn)分析
本節(jié)內(nèi)容的重點(diǎn)是三角形三邊關(guān)系定理及推論.這個(gè)定理與推論
不僅給出了三角形的三邊之間的大小關(guān)系,更重要的是提供了判斷三
條線段能否組成三角形的標(biāo)準(zhǔn);熟練靈活地運(yùn)用三角形的兩邊之和大
于第三邊,是數(shù)學(xué)嚴(yán)謹(jǐn)性的一個(gè)體現(xiàn);同時(shí)也有助于提高學(xué)生全面思
考數(shù)學(xué)問(wèn)題的能力;它還將在以后的學(xué)習(xí)中起著重要作用.
本節(jié)內(nèi)容的難點(diǎn)一是三角形按邊分類,很多學(xué)生常常把等腰三角
形與等邊三角形看成獨(dú)立的兩類,而在解題中產(chǎn)生錯(cuò)誤.二是利用三
角形三邊之間的關(guān)系解題,在學(xué)習(xí)和應(yīng)用這個(gè)定理時(shí),“兩邊之和大
于第三邊”指的是“任何兩邊的和”都“大于第三邊”而學(xué)生的錯(cuò)誤
就在于以偏概全;分類討論在解題中也是學(xué)生感到困難的一個(gè)地方.
2、教法建議
沒(méi)有學(xué)生參與的教學(xué)是不成功的教學(xué),教師為了充分調(diào)動(dòng)主體參
與,必須在為學(xué)生提供必要的背景知識(shí)的前提下,與學(xué)生一道探索定
理在結(jié)構(gòu)上、應(yīng)用上留給我們的啟示.具體說(shuō)明如下:
10
(1)強(qiáng)化能力
新課引入,先讓學(xué)生閱讀教材第一部分,然后通過(guò)回答教師設(shè)計(jì)
的幾個(gè)問(wèn)題,使學(xué)生明確對(duì)三角形按邊分類,做到不重不漏,其中等
腰三角形包括等邊三角形,反過(guò)來(lái)等邊三角形是等腰三角形的一種特
例.
通過(guò)閱讀,使學(xué)生初步認(rèn)識(shí)數(shù)學(xué)概念的含義,發(fā)現(xiàn)疑難;理解領(lǐng)會(huì)
數(shù)學(xué)語(yǔ)言(文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言),促進(jìn)數(shù)學(xué)語(yǔ)言內(nèi)化,從
而提高學(xué)生的數(shù)學(xué)語(yǔ)言水平、自學(xué)能力及交流能力
(2)主動(dòng)獲取
在得出三角形三條邊關(guān)系定理過(guò)程中,針對(duì)基礎(chǔ)比較好的學(xué)生,
讓學(xué)生考慮回憶第
一冊(cè)第一章中學(xué)過(guò)的這條公理并給出證明,在這個(gè)基礎(chǔ)上,讓學(xué)
生把定理的內(nèi)容敘述出來(lái).(3)激蕩思維
由定理獲得了:判斷三條線段構(gòu)成一個(gè)三角形的一種方法,除了
這一種方法外,是否還有其它的判斷方法呢?從而激蕩起學(xué)生思維浪
花:方法是什么呢?學(xué)生最初可能很快得到“推論”,此時(shí)瓜熟蒂落,
順理成章地引出教材中的推論.在此基礎(chǔ)上,讓學(xué)生通過(guò)討論,簡(jiǎn)化上
述兩種方法,由此得到下面兩種方法.這里,學(xué)生若感到困難,教師可
適當(dāng)做提示.方法3:已知線段
,(),若第三條線段c滿足-c則線段,
,c可組成一個(gè)三角形.教學(xué)中采用這種教學(xué)方法可培養(yǎng)學(xué)生分析
問(wèn)題探索問(wèn)題的能力,提高學(xué)生對(duì)數(shù)學(xué)知識(shí)結(jié)構(gòu)完整性的認(rèn)識(shí).
(4)加深理解
進(jìn)行必要的例題講解和適當(dāng)?shù)慕忸}練習(xí),以達(dá)到熟練地運(yùn)用定理
及推論.從過(guò)程中讓學(xué)生體味到數(shù)學(xué)造化之神奇.也可適當(dāng)指出,此定
11
理及推論不僅提供了判定三條線段是否構(gòu)成三角形的根據(jù),也為今后
解決字母取值范圍問(wèn)題提供了有利的依據(jù).
整個(gè)教學(xué)過(guò)程,是學(xué)生主動(dòng)參與,教師及時(shí)點(diǎn)撥,學(xué)生積極探索
的過(guò)程,教學(xué)過(guò)程跌宕起伏,問(wèn)題逐步深化,學(xué)生思維逐步擴(kuò)展,使
學(xué)生在愉快、主動(dòng)中得到發(fā)展.
教學(xué)目標(biāo):
(1)掌握三角形三邊關(guān)系定理及其推論,會(huì)根據(jù)三條線段的長(zhǎng)度判
斷他們能否構(gòu)成三角形;
(2)弄清三角形按邊的相等關(guān)系的分類;
(3)通過(guò)三角形的分類學(xué)習(xí),使學(xué)生知道分類的基本思想,提高學(xué)
生歸納概括的能力;
(4)通過(guò)三角形三邊關(guān)系定理的學(xué)習(xí),培養(yǎng)學(xué)生轉(zhuǎn)化的能力;
(5)通過(guò)等邊三角形是等腰三角形的特例,滲透一般與特殊的辯證
關(guān)系.
教學(xué)重點(diǎn):三角形三邊關(guān)系定理及推論
教學(xué)難點(diǎn):三角形按邊分類及利用三角形三邊關(guān)系解題
教學(xué)用具:直尺、微機(jī)
教學(xué)方法:談話、探究式
教學(xué)過(guò)程:
1、閱讀新課,回答問(wèn)題
先讓學(xué)生閱讀教材的第一部分,然后回答下列問(wèn)題:
(1)這一部分教材中的數(shù)學(xué)概念有哪些?(指出來(lái)并給予解釋)
(2)等腰三角形與等邊三角形有什么關(guān)系?
估計(jì)有的學(xué)生可能把等腰三角形和等邊三角形看成獨(dú)立的兩類.
(3)寫(xiě)出三角形按邊的相等關(guān)系分類的情況.
12
教師最后板書(shū)給出.
(要求學(xué)生之間可互相補(bǔ)充,從一開(kāi)始就鼓勵(lì)雙邊交流與多邊交
流)
2、發(fā)現(xiàn)并推導(dǎo)出三邊關(guān)系定理
問(wèn)題1:用長(zhǎng)度為4cm、10cm、16cm的線繩(課前準(zhǔn)備好的)
能否搭建一個(gè)三角形?(讓學(xué)生動(dòng)手操作)
問(wèn)題2:你能解釋上述結(jié)果的原因嗎?
問(wèn)題3:任何三條線段都能組成一個(gè)三角形嗎?滿足什么條件時(shí),
三條線段可組成一個(gè)三角形?
定理:三角形兩邊的和大于第三邊
(發(fā)現(xiàn)過(guò)程采用小步子原則,讓學(xué)生在不知不覺(jué)中發(fā)現(xiàn)數(shù)學(xué)中的
真理)
3、導(dǎo)出三邊關(guān)系定理的推論及其它兩種方法
由前面得到了判斷所給三條線段能否組成三角形的一個(gè)依據(jù).那
么是否還有其它方法呢?請(qǐng)同學(xué)們?cè)诙ɡ淼幕A(chǔ)上來(lái)找:
估計(jì)學(xué)生很容易得到推論,讓學(xué)生用自己的語(yǔ)言敘述,教師稍加
整理后給出規(guī)范敘述.
推論:三角形兩邊的差小于第三邊
(給每一個(gè)學(xué)生表現(xiàn)個(gè)人數(shù)學(xué)語(yǔ)言表達(dá)才能的機(jī)會(huì))
能否簡(jiǎn)化上面定理及推論?從而得到如下兩種判定方法:
(1)、已知線段,(),若第三條線段c滿足-c則線段,,c可組成
一個(gè)三角形.
4、三角形三邊關(guān)系定理及推論的應(yīng)用
例1判斷題:(出示投影)
(1)等邊三角形是等腰三角形
13
(2)三角形可分為不等邊三角形、等腰三角形和等邊三角形
(3)已知三線段滿足,那么為邊可構(gòu)成三角形
(4)等腰三角形的腰比底長(zhǎng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度倉(cāng)儲(chǔ)物流租賃管理協(xié)議范本2篇
- 個(gè)人場(chǎng)地租賃合同(2024版)6篇
- 專線接入服務(wù)個(gè)性化協(xié)議范例2024版A版
- 2024用戶服務(wù)合同模板
- 二零二五年度特色火鍋店租賃合同范本3篇
- 2025年度柴油產(chǎn)品質(zhì)量保證合同模板4篇
- 2024年規(guī)范珠寶玉石市場(chǎng)買賣協(xié)議樣本版B版
- 2025年度智能公寓租賃管理服務(wù)合同標(biāo)準(zhǔn)2篇
- 2025年度餐飲娛樂(lè)場(chǎng)地租賃合同范本12篇
- 2025年茶葉深加工項(xiàng)目合作協(xié)議4篇
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)附答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- 2024年廣東省深圳市中考英語(yǔ)試題含解析
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識(shí)課件
- 建筑工程施工圖設(shè)計(jì)文件審查辦法
- 干部職級(jí)晉升積分制管理辦法
- 培訓(xùn)機(jī)構(gòu)應(yīng)急預(yù)案6篇
- 北師大版數(shù)學(xué)五年級(jí)上冊(cè)口算專項(xiàng)練習(xí)
- 應(yīng)急物資智能調(diào)配系統(tǒng)解決方案
- 2025年公務(wù)員考試時(shí)政專項(xiàng)測(cè)驗(yàn)100題及答案
評(píng)論
0/150
提交評(píng)論