高中數(shù)學第2章圓錐曲線與方程221雙曲線定義和標準方程說課湘教版11_第1頁
高中數(shù)學第2章圓錐曲線與方程221雙曲線定義和標準方程說課湘教版11_第2頁
高中數(shù)學第2章圓錐曲線與方程221雙曲線定義和標準方程說課湘教版11_第3頁
高中數(shù)學第2章圓錐曲線與方程221雙曲線定義和標準方程說課湘教版11_第4頁
高中數(shù)學第2章圓錐曲線與方程221雙曲線定義和標準方程說課湘教版11_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

雙曲線的定義及其標準方程一、教材分析與辦理1、教材的地位與作用學生初步認識圓錐曲線是從橢圓開始的,雙曲線的學習是對其研究內容的進一步深入和提高。若是雙曲線研究的透徹、清楚,那么拋物線的學習就會理所應當。因此說本節(jié)課的作用就是縱向承接橢圓定義和標準方程的研究,橫向為雙曲線的簡單性質的學習打下基礎。2、學生情況分析:學生在學習這節(jié)課以前,已掌握了橢圓的定義和標準方程,也以前試一試過研究式的學習方式,因此說從知識和學習方式上來說學生已具備了自行研究和推導方程的基礎。其他,高二學生思想活躍,敢于表現(xiàn)自己,不喜歡被動地接受別人現(xiàn)成的見解,但同時也缺少發(fā)現(xiàn)問題和提出問題的意識。依照以上對教材和學生的分析,考慮到學生已有的認知規(guī)律我希望學生能達到以下三個授課目標。、授課目標1)知識與技術:理解雙曲線的定義并能獨立推導標準方程;(2)過程與方法:經(jīng)過定義及標準方程的挖掘與研究,使學生進一步體驗類比及數(shù)形聯(lián)合等思想方法的運用,提高學生的察看與研究能力;(3)感神態(tài)度與價值觀:經(jīng)過教師指導下的學生溝通研究活動,激發(fā)學生的學習興趣,培養(yǎng)學生用聯(lián)系的見解認識問題。4.授課重點、難點依照授課目標,依照學生的認知規(guī)律,確定本節(jié)課的重點是理解和掌握雙曲線的定義及其標準方程。難點是雙曲線標準方程的推導。5、教材辦理:我對授課內容作了一點調整:教材中是借用細繩畫出的雙曲線圖形,而我改用幾何畫板畫出雙曲線圖形。因為對照之下,幾何畫板更加形象直觀。經(jīng)過幾何畫板,學生不只可看到雙曲-1-線形成的過程,而且較易看出橢圓與雙曲線形成的聯(lián)系和差異。二、授課方法與授課手段1、授課方法出名數(shù)學家波利亞以為:“學習任何東西最好的路子是自己去發(fā)現(xiàn)。”雙曲線的定義和標準方程與橢圓很近似,學生已經(jīng)有了一些學習橢圓的經(jīng)驗,因此本節(jié)課我采用了“啟迪研究”式的授課方法,重點突出以下兩點:1)以類比思想作為授課的主線2)以自主研究作為學生的學習方法2、授課手段采用多媒體協(xié)助授課。表現(xiàn)在用幾何畫板畫雙曲線。但不是純真用動畫演示給學生看,而是用動畫啟迪引導學生思慮,調換學生學習的積極性。三、授課過程與設計為達到本節(jié)課的授課目標,更好地突出重點,分別難點,我把授課過程分為四個階段。(一)知識引入----知識回首、察看動畫、歸納定義在課的開始我設置了這樣幾個問題,以幫助學生進行知識回首:1)橢圓的第必然義是什么?定義中哪些字特別重點?2)橢圓的標準方程是什么?3)怎樣判斷焦點地點?a、b、c是何種關系?(片)經(jīng)過回首,既檢測了學生對前面知識的掌握情況,同時又為下面雙曲線的學習做好鋪墊。此后,告訴學生:今天要學習一種新的曲線。翻開幾何畫板,第一經(jīng)過動畫讓學生再一次回首橢圓的生成過程,爾后改變圖中的條件,將距離變大,動畫生成一種新的曲線,學生易看出該曲線為雙曲線。雙曲線的定義其實就是動點所知足的關系,那么雙曲線的定義是什么?也就是動點所-2-知足的關系是什么?這個問題可讓學生進行研究。解決這個問題有兩個難點:一是距離的運算關系的得出;二是運算關系的簡化。在研究中,學生類比橢圓會想到動點到兩定點的距離差為定值,會以為這個定值必是正當,而忽略了距離差為負值的情況,這樣實質上只能獲得雙曲線的一支。關于這種情況,我采用啟迪引導,把從一支移到另一支,爾后讓學生再次思慮自己獲得的關系可否正確。在引導下,學生會想到自己缺少一種情況,動點到兩定點的距離差為正當或正當?shù)南喾磾?shù)。但這個關系能不能夠加以簡化?學生這個時候會聯(lián)想到利用絕對值進行簡化。這樣就獲得了動點所知足的較為精華的關系,也就是獲得了雙曲線的定義。這一設計讓學生先形象直觀地看到橢圓與雙曲線的形成過程,在此基礎上,再經(jīng)過教師的引導,學生即可在察看思慮中一步一步地由感性認識上漲到理性認識,最后獲得雙曲線定義,進而培養(yǎng)了學生的察看能力及歸納能力。其他,這一設計也在形的方面實現(xiàn)了橢圓與雙曲線的比較,也為下面雙曲線定義的挖掘及兩種曲線的比較打下基礎。隨著雙曲線定義的得出,授課進入第二階段---知識研究(二)知識研究----定義的挖掘、標準方程的推導、方程的比較1、定義的挖掘在這一環(huán)節(jié)中,我們要認識到定義中的絕對值和兩點間距離與常數(shù)的大小關系二者對曲線的影響。第一,我設置了這樣兩個問題:(1)類比橢圓搜尋雙曲線定義中的重點字;-3-(2)若分別去掉這幾個重點字曲線會發(fā)生怎樣變化?(片)爾后讓學生帶著問題進行合作研究,教師可適合引導,關于學生難以理解的地方合時賞賜幫助指導。誠然學生學習橢圓定義時也接觸過近似問題,但雙曲線較為復雜,比方:增加了“絕對值”等等。學生要獨立達成會較為困難,因此采用合作研究。這個過程既能夠加深學生對定義的理解,又讓可學生在互相溝通中互相啟迪、激勵、共同進步提高,進而培養(yǎng)學生的表達能力和協(xié)作能力。在得出結論后,我又為學生供應了以下題目:請說出以下方程對應曲線的名稱:雙曲線雙曲線右支(3)(雙曲線)(4)(雙曲線右支)(5)(橢圓)(6)(以(0,4)為端點,沿著y軸正向的一條線)(片)這些題目由淺入深,前面兩題學生可由雙曲線定義直接認識到動點的幾何含義,后四題需依照兩點間距離公式及橢圓雙曲線定義間接認識到動點的幾何含義。這樣設置有了過渡,學生不會感覺跨度很大,辦理起來比較隨手。經(jīng)過這些題的練習能夠加深學生對定義的理解,更重要的這些題目就是學生對自己研究結果的應用。讓學生體驗到應用自己研究果實的歡樂,對學生來說是一種激勵,一舉兩得。2、標準方程的推導這一環(huán)節(jié)是本節(jié)課的難點,為了打破它,我設置了這樣幾個問題讓其貫串推導過程以將難點分解:1)回首橢圓標準方程的推導步驟及方法;2)類比橢圓試著推導雙曲線的標準方程;3)換元辦理與橢圓有沒有差異?-4-4)猜證雙曲線焦點在y軸上的標準方程。(片)爾后讓學生獨立達成推導過程。這樣設置的目的是考慮到由定義求方程,就是求軌跡方程的問題,而且雙曲線的標準方程推導過程與橢圓十分近似,學生有能力獨立達成。但在因為化簡根式時運算量較大,辦理起來很可能出現(xiàn)一些運算錯誤。其他,變形時絕大部分學生會想到先移項再平方,少部分學生會直接平方。若直接平方,就會出現(xiàn)4次方,較為復雜。若是在實質授課中,有學生提出這種做法,我會讓爾后讓大家參加分析討論,看看哪一種做法更加簡單。以讓學生認識到此后在變形前要考慮清楚不要盲目去做。整個這個推導過程,不只提高了學生的變形能力、運算能力,而且也提高學生的分析問題和解決問題的能力。3、方程的比較此時,學生接觸的方程已比很多,很簡單混雜,有必要加以比較。我引導學生進行以下兩組比較:(1)雙曲線方程的兩種形式的比較;(2)橢圓方程與雙曲線方程的比較。(片)比較時會讓學生注意方程構造的差異和聯(lián)系,比方說:終究是平方差仍是平方和。另外,還要注意橢圓方程和雙曲線方程都波及到的三個量a、b、c它們的差異和聯(lián)系。比較后,學生可初步的分清四個標準方程及知道怎樣判斷a、b、c。此后,我又準備了這樣一組題:請說出以下方程所表示曲線的焦點地點及a、b、c的值:(片)能夠檢測學生對四個方程的掌握程度。學生辦理時,前三題起來會比較順利,第4題很可能出現(xiàn)-5-問題。因為需變成標準形式此后再判斷焦點地點及a、b、c的值。(三)知識應用----例題與堅固練習1、例題:在本環(huán)節(jié)中我為學生準備辦理兩道例題,例題可由學生解說,教師指導補充。例1、已知雙曲線焦點的坐標為,雙曲線上一點P到,的距離的差的絕對值等于6,求雙曲線的標準方程。這道題難度不大,可直接利用定義求標準方程。也能夠按求軌跡方程的方法求標準方程,學生不會出現(xiàn)太大問題??墒且驅W生指明,若是某種軌跡適合某種曲線的定義,就不用再用列方程求解,只需利用定義求出常例待定函數(shù)即可。例2、已知雙曲線的焦點在y軸上,而且雙曲線上兩點,的坐標為(,),(,)求雙曲線的標準方程。(片)這道題可采用待定系數(shù)法求標準方程。本題中雙曲線焦點在y軸上,學生在求解過程中很可能會忽略這個條件,易將方程設成焦點在x軸的。教師可實時加以重申,讓學生注意審題,以培養(yǎng)學生親密的思想和謹慎的學習態(tài)度。設置兩道題是考慮到他們都根源于教材,牢牢圍繞雙曲線的定義和標準方程,題目典型而且也有梯度,可使學生初步掌握定義及標準方程的應用。2、堅固練習練習是學習活動中不能缺少的環(huán)節(jié),可堅固對知識的理解,在這一環(huán)節(jié)我為學生準備了三道練習題。(1)已知雙曲線的實軸長為6,焦距為10,則該雙曲線的標準方程為()-6-x2y2B.x2y21A.1169916C.x2y21或x2y21D.x2y21或x2y21916169169916本題是求焦點不確定的雙曲線標準方程,學生易忽略焦點在y軸的情況,經(jīng)過本題的練習能夠提示學生考慮問題要全面。m取值范圍。(2)已知方程表示雙曲線,求本題限制條件為m+2和m+1同號,但會有一些學生會以為它們均大于0,忽略了均小于0的情況,因此會丟解,因此經(jīng)過這道題的練習會提示學生考慮問題要仔細、全面,同時又可加深學生對定義及標準方程的理解。(3)相距2km的兩個哨所A,B都聽到遠處傳來的炮彈爆炸聲,已知當時的聲速為330m\s,在A哨所聽到爆炸聲的時間比在B處遲4s。試判斷爆炸點在什么上,并求出曲線的方程。(片)這道題是從生活中提煉出的數(shù)學識題,設計本題的目的是想經(jīng)過練習題的解決能夠加強學生的應用能力及應企圖識,讓學生感悟到數(shù)學是源于生活,服務于生活的辨證唯物主義見解。(四)知識小結----歸納知識與部署作業(yè)1、知識總結:(1)雙曲線的定義(與橢圓的差異)(2)標準方程(兩種形式)(3)焦點地點的判斷(與橢圓的差異)4)a、b、c的關系(與橢圓的差異)(片)在課的結尾,我讓學生對本節(jié)課進行了總結。目的是幫助他們認清這節(jié)課的知識構造,培養(yǎng)他們的歸納總結能力。-7-2、作業(yè):1)用表格形式整理雙曲線與橢圓的差異和聯(lián)系2)XX頁第XX題(3)(選做)M是雙曲線上一點,,是雙曲線的焦點,,求的面積。若使雙曲線的方程和角度隨意變化,你能得出一般性的結論?(片)授課內涵不限制于講堂,為了幫助學生課下能夠連續(xù)研究和研究,我設置了幾組不同樣層次的作業(yè),以幫助學生堅固對定義和標準方程的理解,同時可全面照想到不同樣層次的學生,激發(fā)他們的能動性。板書設計雙曲線的定義及其標準方程一、雙曲線的定義三例1:定義的挖掘二、雙曲線的標準方程例21、推導:2、比較:(片)這樣的板書設計目的是為了突出這節(jié)課的主要內容和重點,幫助學生理清思路,起到提綱挈領的作用。四、授課方案的想法說明:-8-我在授課過程設計方面注意了三點:1.授課過程的著力點放在了怎樣激發(fā)學生的學習動機,培養(yǎng)學生的學習興趣上,這是喚醒學生主體認識的重點。2.授課過程的重點放在了培養(yǎng)學生的創(chuàng)新精神和實踐能力上,而掌握重點的重點是怎樣選擇好創(chuàng)新精神、實踐能力與講堂授課的聯(lián)合,這個聯(lián)合點從學科來說,就是以科學知識為載體,培養(yǎng)學生的創(chuàng)新思想方法;從教師來說就是“思路、教路、學路”三者有機聯(lián)合的授課過程設計,及其在講堂中的藝術展現(xiàn);從學生來說,就是親歷、體驗、研究、思慮和創(chuàng)辦性的解決問題的過程,從而在過程中獲得漸漸發(fā)展。3.授課過程的基本點放在了夯實基礎知識和訓練基本技術上,基礎知識的授課重視了層次性、針對性。我在授課理念方面重視了四點第一是能動性:師生

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論