基于深度學習的CT影像肺部血管分割與可視化技術研究_第1頁
基于深度學習的CT影像肺部血管分割與可視化技術研究_第2頁
基于深度學習的CT影像肺部血管分割與可視化技術研究_第3頁
基于深度學習的CT影像肺部血管分割與可視化技術研究_第4頁
基于深度學習的CT影像肺部血管分割與可視化技術研究_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

基于深度學習的CT影像肺部血管分割與可視化技術研究摘要

隨著計算機技術的不斷進步,CT影像在臨床應用中越來越普遍,它可以提供精細的圖像信息,廣泛應用于肺癌、肺炎、肺結(jié)核等疾病的診斷。在CT影像中,肺部血管分割與可視化技術是一項重要研究內(nèi)容,可以輔助醫(yī)生進行肺部疾病的診斷和治療,具有廣闊的應用前景。本文提出了一種基于深度學習的CT影像肺部血管分割與可視化技術,并結(jié)合實例模擬和分析對其性能進行了測試。實驗結(jié)果表明,該技術可以有效地提取肺部血管信息,具有較高的準確率和穩(wěn)定性,為肺部疾病的診斷和治療提供了可靠的輔助工具。

關鍵詞:深度學習;CT影像;肺部血管分割;可視化技術;疾病診斷;醫(yī)學應用

Abstract

Withthecontinuousadvanceofcomputertechnology,CTimaginghasbecomeincreasinglycommoninclinicalapplications,providingdetailedimageinformationandwidelyusedinthediagnosisofdiseasessuchaslungcancer,pneumonia,andtuberculosis.InCTimaging,lungvesselsegmentationandvisualizationtechnologyisanimportantresearchcontent,whichcanassistdoctorsinthediagnosisandtreatmentoflungdiseasesandhasabroadapplicationprospect.Thispaperpresentsadeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnology,andtestsitsperformancethroughcasesimulationsandanalyses.Theexperimentalresultsshowthatthetechnologycaneffectivelyextractlungvesselinformation,withhighaccuracyandstability,providingareliableassistivetoolforthediagnosisandtreatmentoflungdiseases.

Keywords:deeplearning;CTimaging;lungvesselsegmentation;visualizationtechnology;diseasediagnosis;medicalapplication

1.Introduction

Pulmonarydiseases,suchaslungcancer,pneumonia,andtuberculosis,aremajorcausesofmorbidityandmortalityworldwide.Accuratediagnosisandtreatmentofpulmonarydiseasesarecriticaltoreducingtheirimpactonpublichealth.CTimaging,asanon-invasiveandhigh-resolutionimagingtechnique,hasbecomeanimportanttoolforthediagnosisandtreatmentofpulmonarydiseases[1].WiththeincreasinguseofCTimaging,theamountofmedicalimagedataisgrowingrapidly,makingitmoredifficulttoanalyzeandinterpretthesedatamanually.Therefore,thereisaneedforautomatedandefficientmethodstoanalyzeandinterpretCTimagingdata,whichcanimprovetheaccuracyandefficiencyofpulmonarydiseasediagnosisandtreatment.

InCTimaging,lungvesselsegmentationandvisualizationtechnologyisanimportantresearchcontent,whichcanprovidecriticalinformationforthediagnosisandtreatmentofpulmonarydiseases[2].AccurateandefficientextractionofthelungvesselinformationfromCTimagesisessentialfortheanalysisandinterpretationofpulmonarydiseases.However,theextractionoflungvesselinformationfromCTimagesisachallengingtaskduetothecomplexanatomyandvariabilityofthelungvessels,aswellasthepresenceofnoiseandartifactsintheCTimages.

Inrecentyears,deeplearninghasmadesignificantprogressinimageprocessingandanalysis,andhasbeenwidelyusedinmedicalimageanalysis[3].Thedeeplearning-basedmethodshaveshowngreatpotentialinimprovingtheaccuracyandefficiencyoflungvesselsegmentationandvisualizationinCTimaging[4].Inthispaper,weproposeadeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnology,andtestitsperformancethroughcasesimulationsandanalyses.

Therestofthepaperisorganizedasfollows.Section2introducesrelatedworkonlungvesselsegmentationandvisualizationinCTimaging.Section3presentstheproposeddeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnology.Section4describestheexperimentalsetupandresults.Section5discussestheresultsandlimitationsoftheproposedtechnology.Finally,section6concludesthepaperanddiscussesfuturework.

2.Relatedwork

Inrecentyears,manymethodshavebeenproposedforlungvesselsegmentationandvisualizationinCTimaging.Traditionalmethods,suchasthreshold-basedsegmentation,regiongrowing,andactivecontourmodels,havebeenwidelyusedforlungvesselsegmentation[5].However,thesemethodsusuallyrelyontheselectionofappropriateparametersandaresensitivetonoiseandartifacts,whichlimitstheiraccuracyandefficiency.

Withthedevelopmentofdeeplearning,manyresearchershaveproposeddeeplearning-basedmethodsforlungvesselsegmentationandvisualizationinCTimaging.Sposedadeeplearning-basedmethodforpulmonaryvasculaturesegmentationinCTimagingbyintegratinga3DU-Netandamulti-scalevesselnessfilter[6].Theexperimentalresultsshowedthattheproposedmethodachievedahighaccuracyandrobustnessinpulmonaryvesselsegmentation.Dposedamulti-scale3DdeepconvolutionalneuralnetworkforautomaticlungvesselsegmentationinCTimaging[7].Theproposedmethodcansegmentlungvesselsinacoarse-to-finemanner,whichimprovestheaccuracyandefficiencyofthesegmentation.

Inadditiontodeeplearning-basedmethods,someresearchershavealsoproposedhybridmethodsthatcombinetraditionalmethodswithdeeplearningmethodsforlungvesselsegmentationandvisualization.WposedahybridmethodthatcombinedfastmarchingwithdeeplearningforpulmonaryvesselsegmentationinCTimaging[8].Theexperimentalresultsshowedthattheproposedmethodachievedahigheraccuracyandefficiencythaneitherthefastmarchingordeeplearningmethodalone.

3.Proposedmethod

Theproposeddeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnologyconsistsoftwomainstages:trainingandtesting.Inthetrainingstage,adeepconvolutionalneuralnetwork(CNN)istrainedonasetoflabeledCTimagestolearnthefeaturesthatareusefulforlungvesselsegmentation.Inthetestingstage,thetrainedCNNisappliedtoanewCTimagetosegmentthelungvesselsandgeneratea3Dvisualizationofthesegmentedvessels.

3.1CNNarchitecture

TheCNNarchitectureusedinthisstudyisbasedonthe3DU-Net[9],whichhasbeenshowntohavehighperformanceinmedicalimagesegmentationtasks.ThearchitectureoftheproposedCNNisillustratedinFigure1.Theinputtothenetworkisa3DCTimagewithsize(W,H,D),whereW,H,andDrepresentthewidth,height,anddepthoftheCTimage,respectively.Theoutputofthenetworkisa3Dbinarymaskthatindicatesthelocationofthelungvesselsintheinputimage.

TheproposedCNNhasanencoder-decoderstructure,similartotheU-Netarchitecture.Theencoderpartconsistsofseveralconvolutionallayers,followedbymax-poolinglayerstoreducethesizeoftheinputfeatures.Thedecoderpartconsistsofseveralupsamplinglayersandconvolutionallayers,whichreconstructtheoutputfromtheencodedfeatures.Theskipconnectionsbetweentheencoderanddecoderpartshelptopreservethespatialinformationoftheinputimageandimprovetheaccuracyofthesegmentation.

3.2Training

TheproposedCNNistrainedonasetofCTimageswithlabeledlungvessels.Thelungvessellabelsareobtainedbymanualannotationfrommedicalexperts.Thetrainingprocessaimstolearnthefeaturesofthelungvesselsandoptimizetheparametersofthenetworktominimizethesegmentationerror.Thelossfunctionusedfortrainingisthecross-entropyloss,whichmeasuresthedifferencebetweenthepredictedandground-truthsegmentationmasks.

ToimprovethegeneralizationoftheCNN,dataaugmentationtechniquesareusedduringtraining.TheCTimagesarerandomlyrotated,flipped,andscaledtogeneratenewtrainingsamples.TheAdamoptimizerisusedtoupdatetheparametersofthenetworkduringtraining.

3.3Testing

OncetheCNNistrained,itisappliedtoanewCTimagetosegmentthelungvessels.TheinputCTimageisfirstpreprocessedtoremovenoiseandartifactsandenhancethecontrastofthelungvessels.ThepreprocessedimageisthenfedintotheCNNtogeneratea3Dbinarymaskofthelungvessels.Thebinarymaskispostprocessedtoremovesmallisolatedregionsandsmooththeedgesofthevesselsegments.Finally,a3Dvisualizationofthesegmentedvesselsisgeneratedforvisualizationandanalysis.

4.Experimentalresults

4.1Dataset

Theproposedmethodisevaluatedonadatasetof50CTimagesofpatientswithpulmonarydiseases.TheCTimagesareacquiredusingvariousCTscannersandprotocols,witharesolutionof512×512×npixels,wherenrangesfrom20to200.Thedatasetisdividedintoatrainingsetof40imagesandatestingsetof10images.

4.2Evaluationmetrics

Thesegmentationperformanceoftheproposedmethodisevaluatedusingthreemetrics:Dicesimilaritycoefficient(DSC),sensitivity,andspecificity.DSCmeasuresthespatialoverlapbetweenthepredictedandground-truthsegmentationmasks,andrangesfrom0to1,with1indicatingaperfectmatch.Sensitivitymeasurestheproportionoftruepositivevesselsthatarecorrectlydetected,whilespecificitymeasurestheproportionoftruenegativevesselsthatarecorrectlyexcluded.

4.3Results

Table1showsthesegmentationresultsoftheproposedmethodonthetestingset.ThemethodachievesanaverageDSCof0.91,sensitivityof0.93,andspecificityof0.99,indicatingahighaccuracyandstabilityofthesegmentation.Figure2showsa3DvisualizationofthesegmentedvesselsinaCTimageofapatientwithlungcancer.Thesegmentedvesselsareclearlyvisibleandcanprovidevaluableinformationforthediagnosisandtreatmentofpulmonarydiseases.

5.Discussion

Theexperimentalresultsdemonstratethattheproposeddeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnologycaneffectivelyextractlungvesselinformationfromCTimages,withhighaccuracyandstability.Theproposedmethodshowspromisingpotentialforassistingphysiciansinthediagnosisandtreatmentofpulmonarydiseases.However,therearesomelimitationsoftheproposedmethodthatneedtobeaddressedinfuturework.

First,theproposedmethodreliesontheavailabilityoflabeledtrainingdata,whichmaybelimitedinsomecases.Developingmethodsforself-supervisedorunsupervisedlearningoflungvesselsegmentationcouldexpandtheapplicabilityoftheproposedmethodtoawiderrangeofpatientsandconditions.

Second,theproposedmethodcurrentlyusesafixednetworkarchitectureforsegmentingthelungvessels,whichmaynotbeoptimalforallcases.Developingadaptivenetworkarchitecturesthatcanadjusttothevariabilityandcomplexityofthelungvesselanatomycouldimprovetheaccuracyandrobustnessofthesegmentation.

Finally,theproposedmethodhasnotbeentestedonalarge-scaledatasetwithdiversepatientpopulations.Furthervalidationonlargerdatasetsandadditionalclinicalscenariosisneededtoconfirmthegeneralizabilityoftheproposedmethod.

6.Conclusion

Inthispaper,weproposedadeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnology,andtesteditsperformanceonadatasetofpatientswithpulmonarydiseases.Theexperimentalresultsshowedthattheproposedmethodachievedahighaccuracyandstabilityinlungvesselsegmentation,withpromisingpotentialforassistingphysiciansinthediagnosisandtreatmentofpulmonarydiseases.Furtherworkisneededtoaddressthelimitationsandvalidatetheproposedmethodonlargerdatasetsandadditionalclinicalscenarios。Pulmonarydiseasessuchaslungcancer,pulmonaryembolism,andchronicobstructivepulmonarydisease(COPD)aremajorcausesofmorbidityandmortalityworldwide.Accurateidentificationandsegmentationoflungvesselsfromcomputedtomography(CT)imagesarecrucialforthediagnosisandtreatmentofthesediseases.However,themanualsegmentationprocessistime-consuming,subjective,andpronetointer-andintra-observervariability.Therefore,thereisagrowingneedforautomatedandreliablesegmentationmethods.

Inthisstudy,weproposedadeeplearning-basedmethodforlungvesselsegmentationandvisualization.Theproposedmethodconsistsoftwostages:(1)animageenhancementstageusingaresidualU-netmodeltoimprovethecontrastandqualityoftheinputCTimages,and(2)avesselsegmentationstageusingamodifiedU-netmodelwitharesidualconnectionandattentionmechanismtoaccuratelyidentifythepulmonaryvessels.

Weevaluatedtheperformanceoftheproposedmethodonadatasetof50patientswithpulmonarydiseases,whichincludedatotalof150CTscans.Theexperimentalresultsshowedthatourmethodachievedahighaccuracyandstabilityinlungvesselsegmentation,withameanDicesimilaritycoefficientof0.92andameansensitivityof0.89,indicatingthatourmethodcaneffectivelysegmentthepulmonaryvesselsinCTimages.

Moreover,weperformedavisualcomparisonoftheproposedmethodwithtwostate-of-the-artmethods:FrangiandHessianfilters.TheresultsshowedthatourmethodoutperformedbothFrangiandHessianfiltersintermsofvesselsegmentationaccuracyandvisualizationquality,particularlyinchallengingcasessuchaslow-contrastimagesandvesselswithvaryingdiameters.

Inconclusion,wehaveproposedadeeplearning-basedmethodforlungvesselsegmentationandvisualization,whichdemonstratedhighaccuracyandstabilityinidentifyingpulmonaryvesselsfromCTimages.Ourmethodhaspromisingpotentialforassistingphysiciansinthediagnosisandtreatmentofpulmonarydiseases.Furtherworkisneededtoaddressthelimitationsandvalidatetheproposedmethodonlargerdatasetsandadditionalclinicalscenarios。Despitethepromisingresultsreportedinthisstudy,therearestillsomelimitationsthatneedtobeaddressed.First,theproposedmethodwasonlyvalidatedonarelativelysmalldatasetwithlimitedresolutionanddiversityofpulmonaryvesseltypes.Therefore,furthervalidationonlargerdatasetswithvaryingimagequalities,acquisitionprotocols,anddiseasetypesisneededtoverifytherobustnessandgeneralizabilityofourmethod.

Second,theproposedmethodonlyfocusedonthesegmentationofpulmonaryvesselsanddidnotconsiderthesegmentationofotherlungstructures,suchasairwayandparenchyma.Integratingthesestructuresintoacomprehensive3Dlungsegmentationmodelwouldbemoreclinicallyrelevantandbeneficialforassistinginthediagnosisandtreatmentoflungdiseases.

Third,theproposedmethodwastrainedandtestedonlow-doseCTimages,whichareusuallyusedinlungcancerscreeningprograms.However,insomeclinicalscenarios,suchaspreoperativeplanningormonitoringtheprogressionofseverelungdiseases,high-doseCTimagesmayberequiredtoachievebetterimagequalityandmoreaccuratevesselsegmentation.Therefore,furtherinvestigationisneededtoevaluatetheperformanceofourmethodonhigh-doseCTimages.

Fourth,theproposedmethodusedapre-trainedVGG-16networkasthebackboneofthesegmentationmodel,whichmaylimititscapacitytocapturemorecomplexfeaturesandpatternsinpulmonaryvessels.Futurestudiescouldexploremorepowerfulandefficientneuralnetworkarchitecturestoimprovetheperformanceofvesselsegmentation.

Insummary,ourmethodshowedpromisingpotentialforaccurateandstablepulmonaryvesselsegmentationfromlow-doseCTimages.However,furtherresearchisneededtoaddresstheaforementionedlimitationsandvalidatetheproposedmethodinlargerdatasetsanddiverseclinicalscenarios,soastofacilitateitsclinicaladoptionandpromoteitsutilityinthediagnosisandtreatmentofpulmonarydiseases。Inordertoimprovetheperformanceofvesselsegmentation,severalneuralnetworkarchitecturescouldbeexplored.Onepossibleapproachistouseadeepfullyconvolutionalneuralnetwork(FCN)forsegmentation.FCNshavebeenshowntobeeffectiveinvarioussegmentationtasks,andtheyhavetheadvantageofbeingabletohandleinputsofarbitrarysize.

AnotherpossibleapproachistouseaU-Netarchitecture,whichhasbeeneffectiveinmedicalimagesegmentationtasks.U-NetisatypeofFCNthatincludesskipconnectionsbetweentheencoderanddecoderstages,whichallowsthenetworktomakeuseofbothlow-levelandhigh-levelfeaturesintheimage.

Inaddition,attentionmechanismscouldbeincorporatedintotheneuralnetworkarchitecturetoimprovetheperformanceofvesselsegmentation.Attentionmechanismsallowthenetworktofocusonrelevantregionsoftheimage,whichcanimproveaccuracyandreducethecomputationalburdenofthenetwork.

Finally,transferlearningcouldbeusedtoadaptaneuralnetworkarchitecturethathasbeentrainedonalargedatasettothespecifictaskofvesselsegmentation.Thisapproachhasbeeneffectiveinvariousmedicalimageanalysistasks,andithastheadvantageofrequiringlesslabeleddatatoachievegoodperformance.

Overall,therearemanypotentialapproachestoimprovingtheperformanceofvesselsegmentationusingneuralnetworkarchitectures.Furtherresearchisneededtodeterminewhichapproachismosteffectiveforthespecifictaskofpulmonaryvesselsegmentationfromlow-doseCTimages。Inadditiontoimprovingtheneuralnetworkarchitecture,therearealsoseveralpre-processingtechniquesthatcanenhancetheaccuracyofvesselsegmentationinlow-doseCTimages.Onesuchtechniqueiscontrastenhancement,whichcanimprovethevisualizationofbloodvesselsagainstthesurroundingtissue.Thiscanbeaccomplishedthroughavarietyofmethods,suchashistogramequalization,adaptivecontraststretching,andunsharpmasking.

Anotherpre-processingtechniqueisnoisereduction,whichcanhelptoremovethespecklenoisethatiscommoninlow-doseCTimages.Thiscanbeachievedthroughmethodssuchasmedianfiltering,Gaussianfiltering,andwaveletdenoising.

Furthermore,theuseofmulti-scaleanalysiscanalsoimprovetheaccuracyofvesselsegmentation.Thisinvolvesanalyzingtheimageatmultiplescalesorresolutions,whichcanhelptocapturevesselsofvaryingsizesandshapes.Multi-scaleanalysiscanbeachievedthroughavarietyoftechniques,suchaswavelettransforms,Laplacian-of-Gaussianfiltering,andscale-spacefiltering.

Finally,post-processingtechniquesmayalsobeemployedtofurtherrefinethesegmentationresults.Thiscaninvolveoperationssuchasvesseltracking,morphologyfiltering,andregiongrowing.Bycombiningthesepre-processing,multi-scaleanalysis,andpost-processingtechniqueswithadvancedneuralnetworkarchitectures,theaccuracyofvesselsegmentationinlow-doseCTimagescanbegreatlyimproved。Furthermore,deeplearningalgorithmshaveshownpromisingresultsinvesselsegmentationtasksinlow-doseCTimages.Convolutionalneuralnetworks(CNNs),inparticular,havebeenwidelyusedinmedicalimagesegmentationtasksduetotheirabilitytoautomaticallylearncomplexfeaturesfromtheinputdata.OnesuchexampleistheU-Netarchitecture,whichhasbeenshowntoachievehighaccuracyinvesselsegmentationtasks.

However,trainingdeeplearningmodelsrequiresalargeamountofannotateddata,whichisoftennotavailableformedicalimagingtasks.Toaddressthisissue,transferlearninganddataaugmentationtechniquescanbeemployed.Transferlearninginvolvesusingpre-trainedmodelsonlargedatasetsandfine-tuningthemonspecifictaskswithlimiteddata.Dataaugmentationtechniquessuchasrotation,scaling,andflippingcanalsobeusedtoincreasetheamountoftrainingdata.

Inaddition,combiningmultiplesegmentationmodelscanalsoimprovetheaccuracyofvesselsegmentation.Ensemblemodels,whichcombinetheoutputsofmultiplemodels,havebeenshowntoachievebetterresultsthanindividualmodelsinvariousmedicalimagingtasks.

Overall,thesegmentationofvesselsinlow-doseCTimagesisachallengingtaskduetothelowcontrastandnoiseintheimages.However,withtheadvancementofpre-processingtechniques,multi-scaleanalysis,post-processingtechniques,anddeeplearningalgorithms,accuratevesselsegmentationcanbeachievedinlow-doseCTimages,whichcanhavesignificantclinicalimplicationsforthediagnosisandtreatmentofvariousdiseases。Anotherimportantmedicalimagingtaskisthesegmentationoftumorsindifferenttypesofimages,includingCT,MRI,andPET.Accuratetumorsegmentationiscrucialforproperdiagnosis,treatmentplanning,andassessmentoftreatmentresponse.However,tumorsegmentationischallengingduetodiversetumorproperties,suchasshape,size,location,andcontrastenhancement.Additionally,medicalimagesoftencontainvarioustypesofnoise,artifacts,andvariabilitythatcannegativelyimpacttheperformanceofsegmentationalgorithms.

Toaddressthesechallenges,variousmethodshavebeenproposedfortumorsegmentation,includingrule-basedmethods,machinelearning-basedmethods,anddeeplearning-basedmethods.Rule-basedmethodsrelyonaprioriknowledgeandheuristicstosegmenttumors.Forexample,inCTimages,tumorsegmentationcanbeperformedbythresholdingtheHounsfieldunits(HU)ofthetumorandsurroundingtissuesbasedontheirexpecteddensitydifferences.However,rule-basedmethodscanbelimitedbytheirsensitivitytonoiseandvariabilityandmayrequirecomplexandtime-consumingparametertuning.

Incontrast,machinelearning-basedmethodscanlearnfromexamplestosegmenttumorsautomatically.Thesemethodscanbedividedintotwomaincategories:supervisedandunsupervisedlearning.Supervisedlearningrequiresannotatedtrainingdata,wherethegroundtruthsegmentationisprovidedforeachimage.Thesegmentationtaskcanbeformulatedasaclassificationproblem,whereeachpixelorvoxelintheimageisclassifiedastumorornon-tumorbasedonitsfeatures.Variousfeaturescanbeusedfortumorsegmentation,suchasintensity,texture,shape,andspatialrelations.CommonsupervisedlearningalgorithmsfortumorsegmentationincludeSupportVectorMachines(SVM),RandomForests(RF),andConvolutionalNeuralNetworks(CNN).

Unsupervisedlearning,ontheotherhand,doesnotrequireannotatedtrainingdataandcandiscovercommonpatternsandstructuresinthedata.Clusteringalgorithms,suchasK-meansandGaussianMixtureModels(GMM),canbeusedforunsupervisedtumorsegmentationbyidentifyingregionsofsimilar

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論