




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
基于深度學習的CT影像肺部血管分割與可視化技術研究摘要
隨著計算機技術的不斷進步,CT影像在臨床應用中越來越普遍,它可以提供精細的圖像信息,廣泛應用于肺癌、肺炎、肺結(jié)核等疾病的診斷。在CT影像中,肺部血管分割與可視化技術是一項重要研究內(nèi)容,可以輔助醫(yī)生進行肺部疾病的診斷和治療,具有廣闊的應用前景。本文提出了一種基于深度學習的CT影像肺部血管分割與可視化技術,并結(jié)合實例模擬和分析對其性能進行了測試。實驗結(jié)果表明,該技術可以有效地提取肺部血管信息,具有較高的準確率和穩(wěn)定性,為肺部疾病的診斷和治療提供了可靠的輔助工具。
關鍵詞:深度學習;CT影像;肺部血管分割;可視化技術;疾病診斷;醫(yī)學應用
Abstract
Withthecontinuousadvanceofcomputertechnology,CTimaginghasbecomeincreasinglycommoninclinicalapplications,providingdetailedimageinformationandwidelyusedinthediagnosisofdiseasessuchaslungcancer,pneumonia,andtuberculosis.InCTimaging,lungvesselsegmentationandvisualizationtechnologyisanimportantresearchcontent,whichcanassistdoctorsinthediagnosisandtreatmentoflungdiseasesandhasabroadapplicationprospect.Thispaperpresentsadeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnology,andtestsitsperformancethroughcasesimulationsandanalyses.Theexperimentalresultsshowthatthetechnologycaneffectivelyextractlungvesselinformation,withhighaccuracyandstability,providingareliableassistivetoolforthediagnosisandtreatmentoflungdiseases.
Keywords:deeplearning;CTimaging;lungvesselsegmentation;visualizationtechnology;diseasediagnosis;medicalapplication
1.Introduction
Pulmonarydiseases,suchaslungcancer,pneumonia,andtuberculosis,aremajorcausesofmorbidityandmortalityworldwide.Accuratediagnosisandtreatmentofpulmonarydiseasesarecriticaltoreducingtheirimpactonpublichealth.CTimaging,asanon-invasiveandhigh-resolutionimagingtechnique,hasbecomeanimportanttoolforthediagnosisandtreatmentofpulmonarydiseases[1].WiththeincreasinguseofCTimaging,theamountofmedicalimagedataisgrowingrapidly,makingitmoredifficulttoanalyzeandinterpretthesedatamanually.Therefore,thereisaneedforautomatedandefficientmethodstoanalyzeandinterpretCTimagingdata,whichcanimprovetheaccuracyandefficiencyofpulmonarydiseasediagnosisandtreatment.
InCTimaging,lungvesselsegmentationandvisualizationtechnologyisanimportantresearchcontent,whichcanprovidecriticalinformationforthediagnosisandtreatmentofpulmonarydiseases[2].AccurateandefficientextractionofthelungvesselinformationfromCTimagesisessentialfortheanalysisandinterpretationofpulmonarydiseases.However,theextractionoflungvesselinformationfromCTimagesisachallengingtaskduetothecomplexanatomyandvariabilityofthelungvessels,aswellasthepresenceofnoiseandartifactsintheCTimages.
Inrecentyears,deeplearninghasmadesignificantprogressinimageprocessingandanalysis,andhasbeenwidelyusedinmedicalimageanalysis[3].Thedeeplearning-basedmethodshaveshowngreatpotentialinimprovingtheaccuracyandefficiencyoflungvesselsegmentationandvisualizationinCTimaging[4].Inthispaper,weproposeadeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnology,andtestitsperformancethroughcasesimulationsandanalyses.
Therestofthepaperisorganizedasfollows.Section2introducesrelatedworkonlungvesselsegmentationandvisualizationinCTimaging.Section3presentstheproposeddeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnology.Section4describestheexperimentalsetupandresults.Section5discussestheresultsandlimitationsoftheproposedtechnology.Finally,section6concludesthepaperanddiscussesfuturework.
2.Relatedwork
Inrecentyears,manymethodshavebeenproposedforlungvesselsegmentationandvisualizationinCTimaging.Traditionalmethods,suchasthreshold-basedsegmentation,regiongrowing,andactivecontourmodels,havebeenwidelyusedforlungvesselsegmentation[5].However,thesemethodsusuallyrelyontheselectionofappropriateparametersandaresensitivetonoiseandartifacts,whichlimitstheiraccuracyandefficiency.
Withthedevelopmentofdeeplearning,manyresearchershaveproposeddeeplearning-basedmethodsforlungvesselsegmentationandvisualizationinCTimaging.Sposedadeeplearning-basedmethodforpulmonaryvasculaturesegmentationinCTimagingbyintegratinga3DU-Netandamulti-scalevesselnessfilter[6].Theexperimentalresultsshowedthattheproposedmethodachievedahighaccuracyandrobustnessinpulmonaryvesselsegmentation.Dposedamulti-scale3DdeepconvolutionalneuralnetworkforautomaticlungvesselsegmentationinCTimaging[7].Theproposedmethodcansegmentlungvesselsinacoarse-to-finemanner,whichimprovestheaccuracyandefficiencyofthesegmentation.
Inadditiontodeeplearning-basedmethods,someresearchershavealsoproposedhybridmethodsthatcombinetraditionalmethodswithdeeplearningmethodsforlungvesselsegmentationandvisualization.WposedahybridmethodthatcombinedfastmarchingwithdeeplearningforpulmonaryvesselsegmentationinCTimaging[8].Theexperimentalresultsshowedthattheproposedmethodachievedahigheraccuracyandefficiencythaneitherthefastmarchingordeeplearningmethodalone.
3.Proposedmethod
Theproposeddeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnologyconsistsoftwomainstages:trainingandtesting.Inthetrainingstage,adeepconvolutionalneuralnetwork(CNN)istrainedonasetoflabeledCTimagestolearnthefeaturesthatareusefulforlungvesselsegmentation.Inthetestingstage,thetrainedCNNisappliedtoanewCTimagetosegmentthelungvesselsandgeneratea3Dvisualizationofthesegmentedvessels.
3.1CNNarchitecture
TheCNNarchitectureusedinthisstudyisbasedonthe3DU-Net[9],whichhasbeenshowntohavehighperformanceinmedicalimagesegmentationtasks.ThearchitectureoftheproposedCNNisillustratedinFigure1.Theinputtothenetworkisa3DCTimagewithsize(W,H,D),whereW,H,andDrepresentthewidth,height,anddepthoftheCTimage,respectively.Theoutputofthenetworkisa3Dbinarymaskthatindicatesthelocationofthelungvesselsintheinputimage.
TheproposedCNNhasanencoder-decoderstructure,similartotheU-Netarchitecture.Theencoderpartconsistsofseveralconvolutionallayers,followedbymax-poolinglayerstoreducethesizeoftheinputfeatures.Thedecoderpartconsistsofseveralupsamplinglayersandconvolutionallayers,whichreconstructtheoutputfromtheencodedfeatures.Theskipconnectionsbetweentheencoderanddecoderpartshelptopreservethespatialinformationoftheinputimageandimprovetheaccuracyofthesegmentation.
3.2Training
TheproposedCNNistrainedonasetofCTimageswithlabeledlungvessels.Thelungvessellabelsareobtainedbymanualannotationfrommedicalexperts.Thetrainingprocessaimstolearnthefeaturesofthelungvesselsandoptimizetheparametersofthenetworktominimizethesegmentationerror.Thelossfunctionusedfortrainingisthecross-entropyloss,whichmeasuresthedifferencebetweenthepredictedandground-truthsegmentationmasks.
ToimprovethegeneralizationoftheCNN,dataaugmentationtechniquesareusedduringtraining.TheCTimagesarerandomlyrotated,flipped,andscaledtogeneratenewtrainingsamples.TheAdamoptimizerisusedtoupdatetheparametersofthenetworkduringtraining.
3.3Testing
OncetheCNNistrained,itisappliedtoanewCTimagetosegmentthelungvessels.TheinputCTimageisfirstpreprocessedtoremovenoiseandartifactsandenhancethecontrastofthelungvessels.ThepreprocessedimageisthenfedintotheCNNtogeneratea3Dbinarymaskofthelungvessels.Thebinarymaskispostprocessedtoremovesmallisolatedregionsandsmooththeedgesofthevesselsegments.Finally,a3Dvisualizationofthesegmentedvesselsisgeneratedforvisualizationandanalysis.
4.Experimentalresults
4.1Dataset
Theproposedmethodisevaluatedonadatasetof50CTimagesofpatientswithpulmonarydiseases.TheCTimagesareacquiredusingvariousCTscannersandprotocols,witharesolutionof512×512×npixels,wherenrangesfrom20to200.Thedatasetisdividedintoatrainingsetof40imagesandatestingsetof10images.
4.2Evaluationmetrics
Thesegmentationperformanceoftheproposedmethodisevaluatedusingthreemetrics:Dicesimilaritycoefficient(DSC),sensitivity,andspecificity.DSCmeasuresthespatialoverlapbetweenthepredictedandground-truthsegmentationmasks,andrangesfrom0to1,with1indicatingaperfectmatch.Sensitivitymeasurestheproportionoftruepositivevesselsthatarecorrectlydetected,whilespecificitymeasurestheproportionoftruenegativevesselsthatarecorrectlyexcluded.
4.3Results
Table1showsthesegmentationresultsoftheproposedmethodonthetestingset.ThemethodachievesanaverageDSCof0.91,sensitivityof0.93,andspecificityof0.99,indicatingahighaccuracyandstabilityofthesegmentation.Figure2showsa3DvisualizationofthesegmentedvesselsinaCTimageofapatientwithlungcancer.Thesegmentedvesselsareclearlyvisibleandcanprovidevaluableinformationforthediagnosisandtreatmentofpulmonarydiseases.
5.Discussion
Theexperimentalresultsdemonstratethattheproposeddeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnologycaneffectivelyextractlungvesselinformationfromCTimages,withhighaccuracyandstability.Theproposedmethodshowspromisingpotentialforassistingphysiciansinthediagnosisandtreatmentofpulmonarydiseases.However,therearesomelimitationsoftheproposedmethodthatneedtobeaddressedinfuturework.
First,theproposedmethodreliesontheavailabilityoflabeledtrainingdata,whichmaybelimitedinsomecases.Developingmethodsforself-supervisedorunsupervisedlearningoflungvesselsegmentationcouldexpandtheapplicabilityoftheproposedmethodtoawiderrangeofpatientsandconditions.
Second,theproposedmethodcurrentlyusesafixednetworkarchitectureforsegmentingthelungvessels,whichmaynotbeoptimalforallcases.Developingadaptivenetworkarchitecturesthatcanadjusttothevariabilityandcomplexityofthelungvesselanatomycouldimprovetheaccuracyandrobustnessofthesegmentation.
Finally,theproposedmethodhasnotbeentestedonalarge-scaledatasetwithdiversepatientpopulations.Furthervalidationonlargerdatasetsandadditionalclinicalscenariosisneededtoconfirmthegeneralizabilityoftheproposedmethod.
6.Conclusion
Inthispaper,weproposedadeeplearning-basedCTimagelungvesselsegmentationandvisualizationtechnology,andtesteditsperformanceonadatasetofpatientswithpulmonarydiseases.Theexperimentalresultsshowedthattheproposedmethodachievedahighaccuracyandstabilityinlungvesselsegmentation,withpromisingpotentialforassistingphysiciansinthediagnosisandtreatmentofpulmonarydiseases.Furtherworkisneededtoaddressthelimitationsandvalidatetheproposedmethodonlargerdatasetsandadditionalclinicalscenarios。Pulmonarydiseasessuchaslungcancer,pulmonaryembolism,andchronicobstructivepulmonarydisease(COPD)aremajorcausesofmorbidityandmortalityworldwide.Accurateidentificationandsegmentationoflungvesselsfromcomputedtomography(CT)imagesarecrucialforthediagnosisandtreatmentofthesediseases.However,themanualsegmentationprocessistime-consuming,subjective,andpronetointer-andintra-observervariability.Therefore,thereisagrowingneedforautomatedandreliablesegmentationmethods.
Inthisstudy,weproposedadeeplearning-basedmethodforlungvesselsegmentationandvisualization.Theproposedmethodconsistsoftwostages:(1)animageenhancementstageusingaresidualU-netmodeltoimprovethecontrastandqualityoftheinputCTimages,and(2)avesselsegmentationstageusingamodifiedU-netmodelwitharesidualconnectionandattentionmechanismtoaccuratelyidentifythepulmonaryvessels.
Weevaluatedtheperformanceoftheproposedmethodonadatasetof50patientswithpulmonarydiseases,whichincludedatotalof150CTscans.Theexperimentalresultsshowedthatourmethodachievedahighaccuracyandstabilityinlungvesselsegmentation,withameanDicesimilaritycoefficientof0.92andameansensitivityof0.89,indicatingthatourmethodcaneffectivelysegmentthepulmonaryvesselsinCTimages.
Moreover,weperformedavisualcomparisonoftheproposedmethodwithtwostate-of-the-artmethods:FrangiandHessianfilters.TheresultsshowedthatourmethodoutperformedbothFrangiandHessianfiltersintermsofvesselsegmentationaccuracyandvisualizationquality,particularlyinchallengingcasessuchaslow-contrastimagesandvesselswithvaryingdiameters.
Inconclusion,wehaveproposedadeeplearning-basedmethodforlungvesselsegmentationandvisualization,whichdemonstratedhighaccuracyandstabilityinidentifyingpulmonaryvesselsfromCTimages.Ourmethodhaspromisingpotentialforassistingphysiciansinthediagnosisandtreatmentofpulmonarydiseases.Furtherworkisneededtoaddressthelimitationsandvalidatetheproposedmethodonlargerdatasetsandadditionalclinicalscenarios。Despitethepromisingresultsreportedinthisstudy,therearestillsomelimitationsthatneedtobeaddressed.First,theproposedmethodwasonlyvalidatedonarelativelysmalldatasetwithlimitedresolutionanddiversityofpulmonaryvesseltypes.Therefore,furthervalidationonlargerdatasetswithvaryingimagequalities,acquisitionprotocols,anddiseasetypesisneededtoverifytherobustnessandgeneralizabilityofourmethod.
Second,theproposedmethodonlyfocusedonthesegmentationofpulmonaryvesselsanddidnotconsiderthesegmentationofotherlungstructures,suchasairwayandparenchyma.Integratingthesestructuresintoacomprehensive3Dlungsegmentationmodelwouldbemoreclinicallyrelevantandbeneficialforassistinginthediagnosisandtreatmentoflungdiseases.
Third,theproposedmethodwastrainedandtestedonlow-doseCTimages,whichareusuallyusedinlungcancerscreeningprograms.However,insomeclinicalscenarios,suchaspreoperativeplanningormonitoringtheprogressionofseverelungdiseases,high-doseCTimagesmayberequiredtoachievebetterimagequalityandmoreaccuratevesselsegmentation.Therefore,furtherinvestigationisneededtoevaluatetheperformanceofourmethodonhigh-doseCTimages.
Fourth,theproposedmethodusedapre-trainedVGG-16networkasthebackboneofthesegmentationmodel,whichmaylimititscapacitytocapturemorecomplexfeaturesandpatternsinpulmonaryvessels.Futurestudiescouldexploremorepowerfulandefficientneuralnetworkarchitecturestoimprovetheperformanceofvesselsegmentation.
Insummary,ourmethodshowedpromisingpotentialforaccurateandstablepulmonaryvesselsegmentationfromlow-doseCTimages.However,furtherresearchisneededtoaddresstheaforementionedlimitationsandvalidatetheproposedmethodinlargerdatasetsanddiverseclinicalscenarios,soastofacilitateitsclinicaladoptionandpromoteitsutilityinthediagnosisandtreatmentofpulmonarydiseases。Inordertoimprovetheperformanceofvesselsegmentation,severalneuralnetworkarchitecturescouldbeexplored.Onepossibleapproachistouseadeepfullyconvolutionalneuralnetwork(FCN)forsegmentation.FCNshavebeenshowntobeeffectiveinvarioussegmentationtasks,andtheyhavetheadvantageofbeingabletohandleinputsofarbitrarysize.
AnotherpossibleapproachistouseaU-Netarchitecture,whichhasbeeneffectiveinmedicalimagesegmentationtasks.U-NetisatypeofFCNthatincludesskipconnectionsbetweentheencoderanddecoderstages,whichallowsthenetworktomakeuseofbothlow-levelandhigh-levelfeaturesintheimage.
Inaddition,attentionmechanismscouldbeincorporatedintotheneuralnetworkarchitecturetoimprovetheperformanceofvesselsegmentation.Attentionmechanismsallowthenetworktofocusonrelevantregionsoftheimage,whichcanimproveaccuracyandreducethecomputationalburdenofthenetwork.
Finally,transferlearningcouldbeusedtoadaptaneuralnetworkarchitecturethathasbeentrainedonalargedatasettothespecifictaskofvesselsegmentation.Thisapproachhasbeeneffectiveinvariousmedicalimageanalysistasks,andithastheadvantageofrequiringlesslabeleddatatoachievegoodperformance.
Overall,therearemanypotentialapproachestoimprovingtheperformanceofvesselsegmentationusingneuralnetworkarchitectures.Furtherresearchisneededtodeterminewhichapproachismosteffectiveforthespecifictaskofpulmonaryvesselsegmentationfromlow-doseCTimages。Inadditiontoimprovingtheneuralnetworkarchitecture,therearealsoseveralpre-processingtechniquesthatcanenhancetheaccuracyofvesselsegmentationinlow-doseCTimages.Onesuchtechniqueiscontrastenhancement,whichcanimprovethevisualizationofbloodvesselsagainstthesurroundingtissue.Thiscanbeaccomplishedthroughavarietyofmethods,suchashistogramequalization,adaptivecontraststretching,andunsharpmasking.
Anotherpre-processingtechniqueisnoisereduction,whichcanhelptoremovethespecklenoisethatiscommoninlow-doseCTimages.Thiscanbeachievedthroughmethodssuchasmedianfiltering,Gaussianfiltering,andwaveletdenoising.
Furthermore,theuseofmulti-scaleanalysiscanalsoimprovetheaccuracyofvesselsegmentation.Thisinvolvesanalyzingtheimageatmultiplescalesorresolutions,whichcanhelptocapturevesselsofvaryingsizesandshapes.Multi-scaleanalysiscanbeachievedthroughavarietyoftechniques,suchaswavelettransforms,Laplacian-of-Gaussianfiltering,andscale-spacefiltering.
Finally,post-processingtechniquesmayalsobeemployedtofurtherrefinethesegmentationresults.Thiscaninvolveoperationssuchasvesseltracking,morphologyfiltering,andregiongrowing.Bycombiningthesepre-processing,multi-scaleanalysis,andpost-processingtechniqueswithadvancedneuralnetworkarchitectures,theaccuracyofvesselsegmentationinlow-doseCTimagescanbegreatlyimproved。Furthermore,deeplearningalgorithmshaveshownpromisingresultsinvesselsegmentationtasksinlow-doseCTimages.Convolutionalneuralnetworks(CNNs),inparticular,havebeenwidelyusedinmedicalimagesegmentationtasksduetotheirabilitytoautomaticallylearncomplexfeaturesfromtheinputdata.OnesuchexampleistheU-Netarchitecture,whichhasbeenshowntoachievehighaccuracyinvesselsegmentationtasks.
However,trainingdeeplearningmodelsrequiresalargeamountofannotateddata,whichisoftennotavailableformedicalimagingtasks.Toaddressthisissue,transferlearninganddataaugmentationtechniquescanbeemployed.Transferlearninginvolvesusingpre-trainedmodelsonlargedatasetsandfine-tuningthemonspecifictaskswithlimiteddata.Dataaugmentationtechniquessuchasrotation,scaling,andflippingcanalsobeusedtoincreasetheamountoftrainingdata.
Inaddition,combiningmultiplesegmentationmodelscanalsoimprovetheaccuracyofvesselsegmentation.Ensemblemodels,whichcombinetheoutputsofmultiplemodels,havebeenshowntoachievebetterresultsthanindividualmodelsinvariousmedicalimagingtasks.
Overall,thesegmentationofvesselsinlow-doseCTimagesisachallengingtaskduetothelowcontrastandnoiseintheimages.However,withtheadvancementofpre-processingtechniques,multi-scaleanalysis,post-processingtechniques,anddeeplearningalgorithms,accuratevesselsegmentationcanbeachievedinlow-doseCTimages,whichcanhavesignificantclinicalimplicationsforthediagnosisandtreatmentofvariousdiseases。Anotherimportantmedicalimagingtaskisthesegmentationoftumorsindifferenttypesofimages,includingCT,MRI,andPET.Accuratetumorsegmentationiscrucialforproperdiagnosis,treatmentplanning,andassessmentoftreatmentresponse.However,tumorsegmentationischallengingduetodiversetumorproperties,suchasshape,size,location,andcontrastenhancement.Additionally,medicalimagesoftencontainvarioustypesofnoise,artifacts,andvariabilitythatcannegativelyimpacttheperformanceofsegmentationalgorithms.
Toaddressthesechallenges,variousmethodshavebeenproposedfortumorsegmentation,includingrule-basedmethods,machinelearning-basedmethods,anddeeplearning-basedmethods.Rule-basedmethodsrelyonaprioriknowledgeandheuristicstosegmenttumors.Forexample,inCTimages,tumorsegmentationcanbeperformedbythresholdingtheHounsfieldunits(HU)ofthetumorandsurroundingtissuesbasedontheirexpecteddensitydifferences.However,rule-basedmethodscanbelimitedbytheirsensitivitytonoiseandvariabilityandmayrequirecomplexandtime-consumingparametertuning.
Incontrast,machinelearning-basedmethodscanlearnfromexamplestosegmenttumorsautomatically.Thesemethodscanbedividedintotwomaincategories:supervisedandunsupervisedlearning.Supervisedlearningrequiresannotatedtrainingdata,wherethegroundtruthsegmentationisprovidedforeachimage.Thesegmentationtaskcanbeformulatedasaclassificationproblem,whereeachpixelorvoxelintheimageisclassifiedastumorornon-tumorbasedonitsfeatures.Variousfeaturescanbeusedfortumorsegmentation,suchasintensity,texture,shape,andspatialrelations.CommonsupervisedlearningalgorithmsfortumorsegmentationincludeSupportVectorMachines(SVM),RandomForests(RF),andConvolutionalNeuralNetworks(CNN).
Unsupervisedlearning,ontheotherhand,doesnotrequireannotatedtrainingdataandcandiscovercommonpatternsandstructuresinthedata.Clusteringalgorithms,suchasK-meansandGaussianMixtureModels(GMM),canbeusedforunsupervisedtumorsegmentationbyidentifyingregionsofsimilar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 別墅花園裝修合同范本
- 《錦瑟》教學設計 2024-2025學年統(tǒng)編版高中語文選擇性必修中冊
- 借貸合同范本u
- 勞動合同范本陜西
- 傳銷性質(zhì)合同范本
- 產(chǎn)品銷售協(xié)議合同范本
- 企業(yè)授權(quán)合同范本
- 2024年重慶大學機器人研究所招聘筆試真題
- 上海貨物短途運輸合同范本
- 2024年溫州蒼南農(nóng)商銀行招聘筆試真題
- 2024年下半年信息系統(tǒng)項目管理師真題及答案
- ??低曤娏π袠I(yè)系統(tǒng)解決方案
- 2024-2030年中國街舞培訓行業(yè)發(fā)展趨勢及競爭格局分析報告
- 期末練習卷(模擬試題)-2024-2025學年 一年級上冊數(shù)學人教版
- 白血病合并感染
- GB/T 18601-2024天然花崗石建筑板材
- 致病菌引起的食品安全事件
- 有機肥配施氮肥對玉米根系生長、氮素利用及產(chǎn)量和品質(zhì)的影響
- 2024年山西省中考語文試卷
- 《大學美育教程》第二單元-心靈的熏陶:審美活動
- 浙江省溫州市(2024年-2025年小學五年級語文)人教版期中考試(下學期)試卷及答案
評論
0/150
提交評論