黑龍江省哈爾濱市名校2023年中考四模數(shù)學試題含解析_第1頁
黑龍江省哈爾濱市名校2023年中考四模數(shù)學試題含解析_第2頁
黑龍江省哈爾濱市名校2023年中考四模數(shù)學試題含解析_第3頁
黑龍江省哈爾濱市名校2023年中考四模數(shù)學試題含解析_第4頁
黑龍江省哈爾濱市名校2023年中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.2.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S23.在平面直角坐標系中,將拋物線繞著它與軸的交點旋轉180°,所得拋物線的解析式是().A. B.C. D.4.如圖,某同學不小心把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃.那么最省事的辦法是帶()A.帶③去 B.帶②去 C.帶①去 D.帶①②去5.把一枚六個面編號分別為1,2,3,4,5,6的質地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)y=xA.512B.49C.176.根據(jù)物理學家波義耳1662年的研究結果:在溫度不變的情況下,氣球內氣體的壓強p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關系的是()A. B.C. D.7.下列各式計算正確的是()A. B. C. D.8.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB9.如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關于x(cm)的函數(shù)關系的圖象是()A. B. C. D.10.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時 B.7海里/時 C.7海里/時 D.28海里/時11.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(

)A.35° B.45° C.55° D.65°12.如圖,直線a∥b,直線分別交a,b于點A,C,∠BAC的平分線交直線b于點D,若∠1=50°,則∠2的度數(shù)是A.50° B.70° C.80° D.110°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是_______.14.已知,在同一平面內,∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點E,那么∠AEB的度數(shù)為__________.15.如圖,DA⊥CE于點A,CD∥AB,∠1=30°,則∠D=_____.16.如圖,在△ABC中,AB=5,AC=4,BC=3,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB、AC于點M、N;②分別以點M、N為圓心,以大于的長為半徑作弧,兩弧相交于點E;③作射線AE;④以同樣的方法作射線BF,AE交BF于點O,連接OC,則OC=________.17.觀察下列一組數(shù),,,,,…探究規(guī)律,第n個數(shù)是_____.18.如圖,在直角坐標平面xOy中,點A坐標為,,,AB與x軸交于點C,那么AC:BC的值為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,拋物線與x軸交于點A、B,與y軸交于點C,直線y=x+4經(jīng)過點A、C,點P為拋物線上位于直線AC上方的一個動點.(1)求拋物線的表達式;(2)如圖,當CP//AO時,求∠PAC的正切值;(3)當以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標.20.(6分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.21.(6分)一次函數(shù)y=34x的圖象如圖所示,它與二次函數(shù)y=ax2(1)求點C的坐標;(2)設二次函數(shù)圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關系式.22.(8分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經(jīng)過點(﹣1,0),求方程﹣2x2+4x+c=0的根.23.(8分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規(guī)在圖1確定點P,使得PM=PN;(2)設OM=x,ON=x+4,①若x=0時,使P、M、N構成等腰三角形的點P有個;②若使P、M、N構成等腰三角形的點P恰好有三個,則x的值是____________.24.(10分)如圖,BD是矩形ABCD的一條對角線.(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.25.(10分)為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)26.(12分)已知:如圖所示,在中,,,求和的度數(shù).27.(12分)某經(jīng)銷商經(jīng)銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數(shù)量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.(1)二月份冰箱每臺售價為多少元?(2)為了提高利潤,該經(jīng)銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設冰箱為y臺(y≤12),請問有幾種進貨方案?(3)三月份為了促銷,該經(jīng)銷商決定在二月份售價的基礎上,每售出一臺冰箱再返還顧客現(xiàn)金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內,把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,是中心對稱圖形,故不符合題意;C.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;D.既是軸對稱圖形又是中心對稱圖形,故符合題意.故選D.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關鍵.2、D【解析】

根據(jù)題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【點睛】考查了相似三角形的判定與性質,三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.3、B【解析】

把拋物線y=x2+2x+3整理成頂點式形式并求出頂點坐標,再求出與y軸的交點坐標,然后求出所得拋物線的頂點,再利用頂點式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,

∴原拋物線的頂點坐標為(-1,2),

令x=0,則y=3,

∴拋物線與y軸的交點坐標為(0,3),

∵拋物線繞與y軸的交點旋轉180°,

∴所得拋物線的頂點坐標為(1,4),

∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].

故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點的變化確定函數(shù)解析式的變化可以使求解更簡便.4、A【解析】

第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.【詳解】③中含原三角形的兩角及夾邊,根據(jù)ASA公理,能夠唯一確定三角形.其它兩個不行.故選:A.【點睛】此題主要考查全等三角形的運用,熟練掌握,即可解題.5、C【解析】分析:本題可先列出出現(xiàn)的點數(shù)的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數(shù)除以擲骰子可能出現(xiàn)的點數(shù)的總個數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.6、C【解析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【點睛】本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.7、B【解析】A選項中,∵不是同類二次根式,不能合并,∴本選項錯誤;B選項中,∵,∴本選項正確;C選項中,∵,而不是等于,∴本選項錯誤;D選項中,∵,∴本選項錯誤;故選B.8、C【解析】

根據(jù)線段上的等量關系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【點睛】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關鍵是找出各線段間的關系.9、B【解析】

△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數(shù)關系的圖象.【詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數(shù)關系的圖象是B;故選B.【點睛】本題考查了動點函數(shù)圖象問題,用到的知識點是三角形的面積、一次函數(shù),在圖象中應注意自變量的取值范圍.10、A【解析】試題解析:設貨船的航行速度為海里/時,小時后貨船在點處,作于點.由題意海里,海里,在中,所以在中,所以所以解得:故選A.11、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.12、C【解析】

根據(jù)平行線的性質可得∠BAD=∠1,再根據(jù)AD是∠BAC的平分線,進而可得∠BAC的度數(shù),再根據(jù)補角定義可得答案.【詳解】因為a∥b,所以∠1=∠BAD=50°,因為AD是∠BAC的平分線,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本題正確答案為C.【點睛】本題考查的知識點是平行線的性質,解題關鍵是掌握兩直線平行,內錯角相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、k<2且k≠1【解析】試題解析:∵關于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數(shù)根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考點:1.根的判別式;2.一元二次方程的定義.14、65°或25°【解析】

首先根據(jù)角平分線的定義得出∠EAD=∠EAB,再分情況討論計算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,

∴∠EAD=∠EAB,

∵AD∥BC,

∴∠EAD=∠AEB,

∴∠BAD=∠AEB,

∵∠ABC=50°,

∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,

∴∠EAD=∠EAB=,

∵AD∥BC,

∴∠AEB=∠DAE=,∠DAB=∠ABC,

∵∠ABC=50°,

∴∠AEB=×50°=25°.

故答案為:65°或25°.【點睛】本題考查平行線的性質、角平分線的定義等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.15、60°【解析】

先根據(jù)垂直的定義,得出∠BAD=60°,再根據(jù)平行線的性質,即可得出∠D的度數(shù).【詳解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案為60°.【點睛】本題主要考查了平行線的性質以及垂線的定義,解題時注意:兩直線平行,內錯角相等.16、.【解析】

直接利用勾股定理的逆定理結合三角形內心的性質進而得出答案.【詳解】過點O作OD⊥BC,OG⊥AC,垂足分別為D,G,由題意可得:O是△ACB的內心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四邊形OGCD是正方形,∴DO=OG==1,∴CO=.故答案為.【點睛】此題主要考查了基本作圖以及三角形的內心,正確得出OD的長是解題關鍵.17、【解析】

根據(jù)已知得出數(shù)字分母與分子的變化規(guī)律,分子是連續(xù)的正整數(shù),分母是連續(xù)的奇數(shù),進而得出第n個數(shù)分子的規(guī)律是n,分母的規(guī)律是2n+1,進而得出這一組數(shù)的第n個數(shù)的值.【詳解】解:因為分子的規(guī)律是連續(xù)的正整數(shù),分母的規(guī)律是2n+1,

所以第n個數(shù)就應該是:,

故答案為.【點睛】此題主要考查了數(shù)字變化規(guī)律,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.解題的關鍵是把數(shù)據(jù)的分子分母分別用組數(shù)n表示出來.18、【解析】

過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據(jù)∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據(jù)平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點A坐標為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據(jù)平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點睛】本題考查三角形相似的證明以及平行線分線段成比例.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)拋物線的表達式為;(2);(3)P點的坐標是.【解析】

分析:(1)由題意易得點A、C的坐標分別為(-1,0),(0,1),將這兩點坐標代入拋物線列出方程組,解得b、c的值即可求得拋物線的解析式;(2)如下圖,作PH⊥AC于H,連接OP,由已知條件先求得PC=2,AC=,結合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,結合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,這樣在Rt△APH中由tan∠PAC=即可求得所求答案了;(3)如圖,當四邊形AOPQ為符合要求的平行四邊形時,則此時PQ=AO=1,且點P、Q關于拋物線的對稱軸x=-1對稱,由此可得點P的橫坐標為-3,代入拋物線解析即可求得此時的點P的坐標.詳解:(1)∵直線y=x+1經(jīng)過點A、C,點A在x軸上,點C在y軸上∴A點坐標是(﹣1,0),點C坐標是(0,1),又∵拋物線過A,C兩點,∴解得,∴拋物線的表達式為;(2)作PH⊥AC于H,∵點C、P在拋物線上,CP//AO,C(0,1),A(-1,0)∴P(-2,1),AC=,∴PC=2,,∴PH=,∵A(﹣1,0),C(0,1),∴∠CAO=15°.∵CP//AO,∴∠ACP=∠CAO=15°,∵PH⊥AC,∴CH=PH=,∴.∴;(3)∵,∴拋物線的對稱軸為直線,∵以AP,AO為鄰邊的平行四邊形的第四個頂點Q恰好也在拋物線上,∴PQ∥AO,且PQ=AO=1.∵P,Q都在拋物線上,∴P,Q關于直線對稱,∴P點的橫坐標是﹣3,∵當x=﹣3時,,∴P點的坐標是.點睛:(1)解第2小題的關鍵是:作出如圖所示的輔助線,構造出Rt△APH,并結合題中的已知條件求出PH和AH的長;(2)解第3小題的關鍵是:根據(jù)題意畫出符合要求的示意圖,并由PQ∥AO,PQ=AO及P、Q關于拋物線的對稱軸對稱得到點P的橫坐標.【詳解】請在此輸入詳解!20、(1)證明見解析;(2)【解析】

(1)連接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根據(jù)切線的判定得出即可;(2)解直角三角形求出BD,求出BC,根據(jù)勾股定理求出AD,根據(jù)相似三角形的判定和性質求出BE,根據(jù)相似三角形的性質和判定求出BP即可.【詳解】解:(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切線;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面積公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.【點睛】本題考查了切線的判定、圓周角定理、勾股定理、解直角三角形、相似三角形的性質和判定等知識點,能綜合運用性質定理進行推理是解此題的關鍵.21、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數(shù)y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據(jù)點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據(jù)S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據(jù)勾股定理用m表示出AC的長,根據(jù)△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數(shù)表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數(shù)圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數(shù)與一次函數(shù)的綜合題.22、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】

(1)根據(jù)拋物線與x軸有兩個交點,b2-4ac>0列不等式求解即可;

(2)先求出拋物線的對稱軸,再根據(jù)拋物線的對稱性求出拋物線與x軸的另一個交點坐標,然后根據(jù)二次函數(shù)與一元二次方程的關系解答.【詳解】(1)解:∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋物線的對稱軸為直線x=1,∵拋物線經(jīng)過點(﹣1,0),∴拋物線與x軸的另一個交點為(1,0),∴方程﹣2x2+4x+c=0的根為x1=﹣1,x2=1.【點睛】考查了拋物線與x軸的交點問題、二次函數(shù)與一元二次方程,解題關鍵是運用了根與系數(shù)的關系以及二次函數(shù)的對稱性.23、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】

(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點D的位置時,滿足條件;如圖4,根據(jù)等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當⊙M與OB相切時,設切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以OM為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發(fā)現(xiàn)⊙M1與直線OB有一個交點;∴當時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構成等腰三角形的點P恰好有三個,則x的值是:x=0或或故答案為x=0或或【點睛】本題考查了等腰三角形的判定,有難度,本題通過數(shù)形結合的思想解決問題,解題的關鍵是熟練掌握已知一邊,作等腰三角形的畫法.24、(1)作圖見解析;(2)證明見解析;【解析】

(1)分別以B、D為圓心,以大于BD的長為半徑四弧交于兩點,過兩點作直線即可得到線段BD的垂直平分線;(2)利用垂直平分線證得△DEO≌△BFO即可證得結論.【詳解】解:(1)如圖:(2)∵四邊形ABCD為矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分線段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.考點:1.作圖—基本作圖;2.線段垂直平分線的性質;3.矩形的性質.25、2.1.【解析】

據(jù)題意得出tanB=,即可得出tanA,在Rt△ADE中,根據(jù)勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,設EF=x,即可求出x,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論