數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第1頁
數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第2頁
數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第3頁
數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第4頁
數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

成人高考數(shù)學(xué)復(fù)習(xí)資料

集合和簡易邏輯

考點(diǎn):交集、并集、補(bǔ)集

概念:

1、由全部既屬于集合A又屬于集合B的元素所組成的集合,叫做集合A和集合B的交集,記作ACB,讀作“A交B"(求公共元

素)Ar)B={x|xWAiELx£B}

2、由全部屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做集合A和集合B的并集,記作AUB,讀作“A并B〃(求全部元素)

AUB={x|x£A,或x£B}

rA

3、如果己知全集為U,且集合A包含于U,則由U中全部不屬于A的元素組成的集合,叫做集合A的補(bǔ)集,記作“,讀作“A補(bǔ)〃

「A

"={xixeu,且x貴A}

解析:集合的交集或并集主要以例舉法或不等式的形式出現(xiàn)

考點(diǎn):簡易邏輯

概念:

在一個(gè)數(shù)學(xué)命題中,往往由條件A和結(jié)論B兩局部構(gòu)成,寫成“如果A成立,那么B成立〃。

充分條件:如果A成立,那么B成立,記作“A-B”"A推出B,B不能推出A〃。

必要條件:如果B成立,那么A成立,記作“A-B〃”B推出A,A不能推出B"。

充要條件:如果A-B,又有A-B,記作“A-B〃"A推出B,B推出A〃。

解析:分析A和B的關(guān)系,是A推出B還是B推出A,然后進(jìn)行推斷

不等式和不等式組

考點(diǎn):不等式的性質(zhì)

如果a>b,那么b〈a;反之,如果b>a,那么a〈b成立

如果a>b,且b>c,那么a>c

如果a>b,存在一個(gè)c(c可以為正數(shù)、負(fù)數(shù)或一個(gè)整式),那么a+c>b+c,a-c>b-c

如果a>b,c>0,那么ac>bc(兩邊同乘、除?個(gè)正數(shù),不等號不變)

如果a>b,c<0,那么ac〈bc(兩邊同乘、除一個(gè)負(fù)數(shù),不等號變號)

如果a>b>O,那么a2>b2

如果a>b>0,那么萬;反之,如果'分,那么a>b

解析:不等式兩邊同加或同乘主要用于解一元一次不等式或一元二次不等式移項(xiàng)和合并同類項(xiàng)方面

考點(diǎn):一元一次不等式

定義:只有一個(gè)未知數(shù),并且未知數(shù)的最好次數(shù)是一次的不等式,叫一元一次不等式。

解法:移項(xiàng)、合并同類項(xiàng)(把含有未知數(shù)的移到左邊,把常數(shù)項(xiàng)移到右邊,移了之后符號要發(fā)生改變)。

如:6x+8>9x-4,求x?把x的項(xiàng)移到左邊,把常數(shù)項(xiàng)移到右邊,變成6x-9x>-4-8,合并同類項(xiàng)之后得-3x>-12,兩邊同除-3得x<4

(記得改變符號)。

考點(diǎn):一元一次不等式組

定義:由幾個(gè)一元一次不等式所組成的不等式組,叫做一元一次不等式組

解法:求出每個(gè)一元一次不等式的值,最后求這幾個(gè)一元一次不等式的交集(公共局部)。

考點(diǎn):含有絕對值的不等式

定義:含有絕對值符號的不等式,如:lx|<a,1x|>a型不等式及其解法。

簡單絕對值不等式的解法:|x|〈a的解集是收|『63},取中間,在數(shù)軸上表示全部與原點(diǎn)的距離小于a的點(diǎn)的集合;|x|>a的解

集是{x|x>a或x<-a},取兩邊,在數(shù)軸上表示全部與原點(diǎn)的距離大于a的點(diǎn)的集合。

復(fù)雜絕對值不等式的解法:|ax+b|〈c,相當(dāng)于解不等式-c<ax+b<c,不等式三邊同時(shí)減去b,再同時(shí)除以a(注意,當(dāng)a〈0的時(shí)候,

不等號要改變方向);|ax+|>c相當(dāng)于解不等式ax+b>c或ax+b〈-c,解法同一元一次不等式一樣。

解析:主要搞清楚取中間還是取兩邊,取中間是連起來的,取兩邊有“或"

考點(diǎn):一元二次不等式

定義:含有一個(gè)未知數(shù)并且未知數(shù)的最高次數(shù)是二次的不等式,叫做一元二次不等式。如:以2+bx+C>°與"2+bx+C<°

(a>0))

解法:求ar2+"x+c>°(a〉0為例)

步驟:(1)先令Z2+bx+c=°,求出X(三種方法:求根公式、十字相乘法、配方法)

-b+y/b2-4ac

x=-----------------

求根公式:2a

2

十字相乘法:如:6X-7x-5=o求X?

21

X

3-5

交叉相乘后3+-10=-7

2

解析:左邊兩個(gè)相乘等于X前的系數(shù),右邊兩個(gè)相乘等于常數(shù)項(xiàng),交叉相乘后相加等于X前的系數(shù),如滿足條件即可分解成:(2x+l)

_j_5

X(3x-5)=0,兩個(gè)數(shù)相乘等于0,只有當(dāng)2x+l=0或3x-5=0的時(shí)候滿足條件,所以x=2或x=3。

配方法(省略)

(2)求出x之后,“>”取兩邊,取中間,即可求出答案。注意:當(dāng)a〈0時(shí)必需要不等式兩邊同乘-1,使得a〉0,然后用上面

的步驟來解。

考點(diǎn):其他不等式

不等式(ax+b)(cx+d)>0(或〈0)的解法

2

這種不等式可依一元二次方程(ax+b)(cx+d)=0的兩根情況及X系數(shù)的正、負(fù)來確定其解集。

ax+b八

--->0

不等式cx+d(或〈0)的解法

它與(ax+b)(cx+d)〉0(或〈0)是同解不等式,從而前者也可化為一元二次不等式求解。

此處看不明白者問我,課堂上講。

指數(shù)與對數(shù)

考點(diǎn):有理指數(shù)累

正整數(shù)指數(shù)零:a"^axaxa---a表示n個(gè)a相乘,(n'且心口

零的指數(shù)幕:?!?1(。*°)

a-p=工

負(fù)整數(shù)指數(shù)藉:a>,(a0°,pGZ+)

分?jǐn)?shù)指數(shù)累:

正分?jǐn)?shù)指數(shù)幕:“"=后7(a,0,;m,nWN+j^n〉])

--11

Hn-----=--

?ilaUN

負(fù)分?jǐn)?shù)指數(shù)幕:a(a>0,;m,。匕“+且n>l)

解析:重點(diǎn)掌握負(fù)整數(shù)指數(shù)基和分?jǐn)?shù)指數(shù)昂

考點(diǎn):基的運(yùn)算法則

=〃*'(同底數(shù)指數(shù)幕相乘,指數(shù)相加)

廢尸-),

b'(同底數(shù)指數(shù)哥相除,指數(shù)相減)

(/)'(可以乘進(jìn)去)

(abY=a'b'(可以分別x次)

解析:重點(diǎn)掌握同底數(shù)指數(shù)基相乘和相除

考點(diǎn):對數(shù)

定義:如果""=N3>0且。#1),那么b叫做以a為底的N的對數(shù),記作”g"N='(N〉0),這里a叫做底數(shù),N叫做真

數(shù)。特別底,以10為底的對數(shù)叫做常用對數(shù),通常記bg1°N為IgN;以e為底的對數(shù)叫做自然對數(shù),e=2.7182818,通常記

作In—

logaab=b

兩個(gè)恒等式:0'

幾個(gè)性質(zhì):

log”N=b,go,零和負(fù)數(shù)沒有對數(shù)

log""=1,當(dāng)?shù)讛?shù)和真數(shù)相同時(shí)等于1

log"1=0,當(dāng)真數(shù)等于1的對數(shù)等于0

2。=〃,(nGZ)

考點(diǎn):對數(shù)的運(yùn)算法則

log,,(MN)=logflM+logaN(真數(shù)相乘,等于兩個(gè)對數(shù)相加;兩個(gè)對數(shù)相加,底相同,可以變成真數(shù)相乘)

,M11XI

log“7=log“"—log“N

(真數(shù)相除,等于兩個(gè)對數(shù)相減;兩個(gè)對數(shù)相減,底相同,可以變成其數(shù)相除)

log."=〃log""(真數(shù)的次數(shù)n可以移到前面來)

log“后Jog“MLL

〃gM=Mn,真數(shù)的次數(shù)n可以移到前面來)

A

*“=一喻加

a

函數(shù)

考點(diǎn):函數(shù)的定義域和值域

定義:X的取值范圍叫做函數(shù)的定義域;y的值的集合叫做函數(shù)的值域

求定義域:

y-kx+b

y=辦一+hx+c_般形式的定義域:xeR

k

y=~

x分式形式的定義域:x#0

丫二&根式的形式定義域:x>o

y=iog〃”對數(shù)形式的定義域:x>o

解析:考試時(shí)一般會求結(jié)合兩種形式的定義域,分開最后求交集(公共局部)即可

考點(diǎn):函數(shù)的單調(diào)性

在y=/(x)定義在某區(qū)間上任取"%2,且%*2,相應(yīng)得出/(司),,(*2)如果:

1、/(/)</(X2),則函數(shù)、=/(*)在此區(qū)間上是單調(diào)增加函數(shù),或增函數(shù),此區(qū)間叫做函數(shù)的單調(diào)遞增區(qū)間。隨著x的增加,

y值增加,為增函數(shù)。

2、/(/)〉/(工2),則函數(shù)y=/(x)在此區(qū)間上是單調(diào)減少函數(shù),或減函數(shù),此區(qū)間叫做函數(shù)的單調(diào)遞減區(qū)間。隨著x的增加,

y值減少,為減函數(shù)。

解析:分別在其定義區(qū)間上任取兩個(gè)值,代入,如果得到的y值增加了,為增函數(shù);相反為減函數(shù)。

考點(diǎn):函數(shù)的奇偶性

定義:設(shè)函數(shù)'=/(處的定義域?yàn)镈,如果對任意的XWD,有-XGD且:

1、/(一幻=一/(X),則稱/(?為奇函數(shù),奇函數(shù)的圖像關(guān)于原點(diǎn)對稱

2、/(-X)=/(X),則稱/(幻為偶函數(shù),偶函數(shù)的圖像關(guān)于y軸對稱

解析:推斷時(shí)先令》=一》,如果得出的y值是原函數(shù),則是偶函數(shù):如果得出的y值是原函數(shù)的相反數(shù),則是奇函數(shù);否

則就是非奇非偶函數(shù)。

考點(diǎn):一次函數(shù)

定義:函數(shù)y=及*+A叫做一次函數(shù),其中葭b為常數(shù),且火工°。當(dāng)b=o是,丁=〃”為正比例函數(shù),圖像經(jīng)過原點(diǎn)。

當(dāng)k>0時(shí),圖像主要經(jīng)過一三象限;當(dāng)k<0時(shí),圖像主要經(jīng)過二四象限

考點(diǎn):二次函數(shù)

定義:y=+"x+c為二次函數(shù),其中a,b,c為常數(shù),且當(dāng)a>0時(shí),其性質(zhì)如下:

定義域:二次函數(shù)的定義域?yàn)镽

h4ac-b2b

--,-----x---

圖像:頂點(diǎn)坐標(biāo)為(2a4a),對稱軸2a,圖像為開口向上的拋物線,如果a〈o,為開口向下的拋物線

bb

單調(diào)性:(-8,24]單調(diào)遞減,2a,+8)單調(diào)遞增;當(dāng)a<o時(shí)相反.

4ac-b24ac-b2

y

最大值、最小值:4"為最小值;當(dāng)a<0時(shí)4a取最大值

b

玉+%2=---,玉*

韋達(dá)定理:~a

考點(diǎn):反比例函數(shù)

k

y=-

定義:X叫做反比例函數(shù)

定義域:

是奇函數(shù)

當(dāng)k>0時(shí),函數(shù)在區(qū)間(-8,0)與區(qū)間(0,+8)內(nèi)是減函數(shù)

當(dāng)k<0時(shí),函數(shù)在區(qū)間(-8,0)與區(qū)間(0,+8)內(nèi)是增函數(shù)

考點(diǎn):指數(shù)函數(shù)

定義:函數(shù)'=優(yōu)(">°且"D叫做指數(shù)函數(shù)

定義域:指數(shù)函數(shù)的定義域?yàn)镽

性質(zhì):

CI—1,CI—CI

ax>0

圖像:經(jīng)過點(diǎn)(0,1),當(dāng)a>l時(shí),函數(shù)單調(diào)遞增,曲線左方與x軸無限靠近;當(dāng)0<a<l時(shí),函數(shù)單調(diào)遞減,曲線右方可與x軸無限

靠近。(詳細(xì)見教材12頁圖)

考點(diǎn):對數(shù)函數(shù)

定義:函數(shù)y=log?>。且"D叫做對數(shù)函數(shù)

定義域:對數(shù)函數(shù)的定義域?yàn)椋?,+8)

性質(zhì):

log“l(fā)=0,log"=l

零和負(fù)數(shù)沒有對數(shù)

圖像:經(jīng)過點(diǎn)(1,0),當(dāng)a〉l時(shí),函數(shù)單調(diào)遞增,曲線下方與y軸無限靠近;當(dāng)0〈a〈l時(shí),函數(shù)單調(diào)遞減,曲線上方與y軸無限靠

近。(詳細(xì)見教材13頁圖)

數(shù)列

考點(diǎn):通項(xiàng)公式

定義:如果一個(gè)數(shù)列{“"}的第n項(xiàng)""與項(xiàng)數(shù)n之間的函數(shù)關(guān)系可以用一個(gè)公式來表示,這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式。

S"表示前n項(xiàng)之和,即工=卬+生+4+…為,他們有以下關(guān)系:

Y¥

4=S〃-S〃T,〃22

=q

備注:這個(gè)公式主要用來求當(dāng)不了解是什么數(shù)列的情況下。如果滿足0"+1一""="則是等差數(shù)列,如果滿足a"

是等比數(shù)列,推斷出來之后可以直接用以下等差數(shù)列或等比數(shù)列的知識點(diǎn)來求。

考點(diǎn):等差數(shù)列

定義:從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),叫做等差數(shù)列,常數(shù)叫公差,用d表示。a"+l~a"=d

1、等差數(shù)列的通項(xiàng)公式是:a"=a'+(〃T)d

〃⑷+/)n(n-l)d

3“=---------------=na]H----------------

2、前n項(xiàng)和公式是:22

3、等差中項(xiàng):如果a,A.b成差數(shù)列,那么A叫做a與b的等差中項(xiàng),且有

a+b

A=------

2

考點(diǎn):等比數(shù)列

睢=4

定義:從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的比等于同一個(gè)常數(shù),叫做等比數(shù)列,常數(shù)叫公比,用q表示。a"

1、等比數(shù)列的通項(xiàng)公式是,

S,,=#山(/1)

2、前n項(xiàng)和公式是:i—qi—q

3、等比中項(xiàng):如果a,B.b成比數(shù)列,那么B叫做a與b的等比中項(xiàng),且有

B=+\[ah

{"〃}是

重點(diǎn):假設(shè)m.n.p.qGN,且m+"="+4,那么:當(dāng)數(shù)列{叫是等差數(shù)列時(shí),有?"+%='+%;當(dāng)數(shù)列

等比數(shù)列時(shí),有

導(dǎo)數(shù)

考點(diǎn):導(dǎo)數(shù)的幾何意義

1、幾何意義:函數(shù)/(*)在點(diǎn)(、。'丫。)處的導(dǎo)數(shù)值/(尤。)即為了(幻在點(diǎn)(Xo,y。)處切線的斜率。即"=/(X。)=tana

(a為切線的傾斜角)。

備注:這里主要考求經(jīng)過點(diǎn)(x°,y°)的切線方程,用點(diǎn)斜式得出切線方程丁一>°="("一"。)

2、函數(shù)的導(dǎo)數(shù)公式:c為常數(shù)

?'=0

(xny=nxn-'

考點(diǎn):多項(xiàng)式函數(shù)單調(diào)性的判別方法

在區(qū)間(a,b)內(nèi),如果/‘(X)2°則/(X)為增函數(shù):如果/‘(力<°,/(力為減函數(shù)。所以求函數(shù)單調(diào)性除可以依據(jù)函數(shù)

的性質(zhì)求解外,還可以先對函數(shù)求導(dǎo),然后令/'(x)N°解不等式就得到單調(diào)遞增區(qū)間,令/'(X)<°解不等式即得單調(diào)遞減區(qū)

間。

考點(diǎn):最大、最小值

1、確定函數(shù)的定義區(qū)間,求出導(dǎo)數(shù)''(”)

2、令八幻=0求函數(shù)的駐點(diǎn)(駐點(diǎn)即/'(幻=°時(shí)x的根)

3、用函數(shù)的根把定義區(qū)間分成假設(shè)干小區(qū)間,并列成表格.檢查/'(X)在方程根左右的值的符號,如果左正右負(fù),那么/(X)在

這個(gè)根處取得極大值:如果左負(fù)右正,那么/(處在這個(gè)根處取得極小值;如果左右不改變符號即都為正或都為負(fù),則,(幻在這

個(gè)根處無極值。

求出后比擬得出最大值和最小值

此知識點(diǎn)參考202X年全國統(tǒng)一成人高考文科試題第23題

三角函數(shù)及其有關(guān)概念

考點(diǎn):終邊相同的角

在一個(gè)平面內(nèi)做一條射線,逆時(shí)針旋轉(zhuǎn)得到一個(gè)正角a,順時(shí)針旋轉(zhuǎn)得到一個(gè)負(fù)角b,不旋轉(zhuǎn)得到一個(gè)零角。

終邊相同的角

{|3=k,360+a,k屬于Z}

考點(diǎn):角的度量

弧度制:等于半徑長的圓弧所對的圓心角稱為1弧度的角,a表示角,1表示a所對的弧長,r表示半徑,則:

r

角度和弧度的轉(zhuǎn)換:

180°=乃弧度

360°=2n弧度

考點(diǎn):任意角的三角函數(shù)

定義:在平面直角坐標(biāo)系中,設(shè)P(x,y)是角a的終邊上的任意一點(diǎn),且原點(diǎn)到該點(diǎn)的距離為r(r=則比

yxyxrr

,,,,,

rrxyxy

分別叫做角a的正弦、余弦、正切、余切、正割、余割,即

.yxyxrr

sin。=—,cos?=—,tan。=3,cota=—,sectz=—,csca=—

rrxyxy

考點(diǎn):特別角的三角函數(shù)值

a0°30°45°60°90°180°270°

7171717134

0冗

~67TT

V2V3

sina0i0-1

2~T2

V3V2]_

cos。10-10

V22

lana01V3不存在0不存在

3

V3

cota不存在V310不存在0

V

三角函數(shù)式的變換

考點(diǎn):倒數(shù)關(guān)系、商數(shù)關(guān)系、平方關(guān)系

2222

平方關(guān)系是:sin?a+cos2a=1,l+tana=secay1+cota=csca.

倒數(shù)關(guān)系是:tan2,cota=l,sina?csca=l,coscr-seccif=1.

sinaCOS6Z

tana=-------cota=-------

商數(shù)關(guān)系是:cosa,sinao

考點(diǎn):誘導(dǎo)公式

1、第一組:函數(shù)同名稱,符號看象限

sin(l80°+a)--sina,cos080°+a)=-cosa,tan(l80°+a)=tana,cot(l80°+a)=cota

sin(180°-a)=sina9cos(180°-a)=-cosa,tan(l80°-?)=-tana,cot(l80°-a)=-cota

sin(360°-a)=-sina,cos06O°-a)=cosa,tan(360°-a)=-tana,cot(360°-a)=-cota

sin(Z360°+a)=sina,cos(Z360°+a)=cosa,tan(Z360°+a)=tana,cot(攵360°+a)=cota

sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana,cot(-a)=—cota

2、第二

組:變?yōu)橛嗪瘮?shù),符號看象限

sin(90°+〃)=cost?,cos(90°+a)=-sinQ,tan(90°+a)=-cot。,cot(90°+a)=-tana

sin(90°-a)=cosa,cos(90°-a)=sin。,tan(90°-a)=cotcbcot(90°-d)=tan。

sin(270()-a)=一cosa,cos(270°-a)=-sina,tan(270°-a)=cota,cot(270°-a)=tan?

sin(270°+a)=-cosa,cos(270°+a)=sina,tan(270°+a)=-cot。,cot(270°+a)=-tana

考點(diǎn):兩角和、差,倍角公式

]兩角和差?sin(a±£)=sinacos/?±cosasin,

cos@±(3)=coscrcos^+sinc^sin/3

tanor±tan/?

tan(a±0)=1+tan-tan/?

..一sin2。=sina?cosQ

2、倍角公式:sin2a=2sina?cosa_>2

cos如=cos26f-sin2a=2cos2a-\=l-2sin2a

-2tana

tanla-------------

l-tan”

這個(gè)公式很重要,特別記得但凡出現(xiàn)三角函數(shù)平方的都要用到余弦的倍角公式,出現(xiàn)sMc,Cosa的都要用到此考點(diǎn)主

要在考函數(shù)的周期公式用到。

asinx+bcosx=^a2+b2sin(x+^),tan^=—

3、輔助公式:a,這個(gè)公式一般在求最大值或最小值時(shí)用。

三角函數(shù)的圖像和性質(zhì)

考點(diǎn):三角函數(shù)的周期公式、最大值與最小值

標(biāo)準(zhǔn)型周期公式最大值最小值

y-Asin(5+°)+&T=—Z+|A|k-\A\

丁=紅

y-Acos(a)x+⑼+ZZ+|A|%-|A|

\co\

y=Atan(〃r+°)+左T=—無最大值無最小值

|G|

考點(diǎn):正弦、余弦、正切函數(shù)的性質(zhì)

2k7T--,2k.7T+-_2k7r+-,2k7r+—

]、y=sinx的遞增區(qū)間是[_22」(ZeZ),遞減區(qū)間是22伏eZ)

2、、=?05%的遞增區(qū)間是[24萬一萬,24萬]伏€2),遞減區(qū)間是[2&乃伏eZ);

九[乃、

kn一—,K7TH---/\

3、丁='anx的遞增區(qū)間是I22)(keZ)V=cotx的遞減區(qū)間是僅力,k兀+兀

4、V=smx為奇函數(shù),y=cosx為偶函數(shù),y=tanx為奇函數(shù)。一般推斷函數(shù)的奇偶性會考到。

解三角形

考點(diǎn):余弦定理(已知兩邊一角)

由余弦定理第一種形式:/=片+c?-2accosB

a2+c2-b2

由余弦定理第二種形式:cosB=2ac

考點(diǎn):正弦定理(已知兩角一邊)

a_b

=2R

正弦定理(其中R表示三角形的外接圓半徑):sinAsinfisinC

考點(diǎn):面積公式(已知兩邊夾角求面積)

已知△ABC,A角所對的邊長為a,B角所對的邊長為b,C角所對的邊長為c,則三角形的面積如下:

S^abc=—ahsinC=—acsinB=—Z?csinA

222

平面向量

考點(diǎn):向量的內(nèi)積運(yùn)算(數(shù)量積)

〃與匕的數(shù)量積(或內(nèi)積)

a-b=a?b?cos夕

考點(diǎn):向量的坐標(biāo)運(yùn)算

設(shè)a=(M,y),8=(/,%),則:

加法運(yùn)算:a+b=(M,y)+(x2,y2)=cvF"Z

減法運(yùn)算:a-b=(項(xiàng),yI)—(尤2,%)=

ka=Hxi,yJ(。,3)

數(shù)乘運(yùn)算:

內(nèi)積運(yùn)算:a.b=(x,M)*(x2,y2)=項(xiàng)為2+M%

垂直向量:a_Lb=X|“2+必必=0

向量的模:⑸=次+12

重點(diǎn)是向量垂直或求內(nèi)積運(yùn)算。

考點(diǎn):兩個(gè)公式

1、平面內(nèi)兩點(diǎn)的距離公式:

已知4(%,%),2(工2,力)兩點(diǎn),其距離:

山周=)(七一%2尸+(M一%)2

線段的中點(diǎn)公式:

已知片(和必),鳥。2,力)兩點(diǎn),線段片舄的中點(diǎn)的M的坐標(biāo)為(x,y),則:

X.+X-,必+為

x=-------,y=

22

直線

考點(diǎn):直線的斜率

%一y

直線斜率的定義式為k=tan£(夕為傾斜角),已知兩點(diǎn)可以求的斜率k=/一的,(點(diǎn)A(/YJ和點(diǎn)8(工2,%)為直線上任意

兩點(diǎn))。

考點(diǎn):直線方程的幾種形式

點(diǎn)斜式:y-=Mx—/),己知斜率k和某點(diǎn)坐標(biāo)“。?。)

斜截式:y="*+”,已知斜率k和在y軸的截距b

兩點(diǎn)式:必一%X2-X1,已知兩點(diǎn)坐標(biāo)4區(qū),必),3(工2,乃)

2+2=1

截距式:ab,已知在X軸的截距是a,在y軸的截距是b

-般式:Ax+By+C^o

重點(diǎn):直線的點(diǎn)斜式

考點(diǎn):兩條直線的位置關(guān)系

直線Ajx4~y4~C1=0,&x+y4-C2=0

兩條直線平行:/k-*k2

兩條直線垂直:hx七二7

重點(diǎn):平行或垂直兩條直線的斜率關(guān)系

考點(diǎn):點(diǎn)到直線的距離公式

_\AxQ+By0+C\

點(diǎn)PQo,%)到直線/:Ax+By+C=。的距離:^A2+B2

圓錐曲線

考點(diǎn):圓

1、圓的標(biāo)準(zhǔn)方程是:(X—")-+('一”廠=廣,其中:半徑是r,圓心坐標(biāo)為(a,b),

_7D2+E2-4F

2、圓的一般方程是:*2+>2+£次+或+/=0(°-+E一一4b其中:半徑是「2,圓心坐

.巴一3

標(biāo)是I22)

3、圓與直線的位置關(guān)系最常用的方法有兩種,即:

①判別式法:A>0,=0,<0,等價(jià)于直線與圓相交.相切.相離;

②考查圓心到直線的距離與半徑的大小關(guān)系:距離大于半徑.等于半徑.小于半徑,等價(jià)于直線與圓相離.相切.相交。

考點(diǎn):橢圓

——f——_]———_]

bb

1.橢圓標(biāo)準(zhǔn)方程的兩種形式是:/'和/'(?>^>0)o

222

----1---=1X=±-c—-

2.橢圓a?b?(">">°)的焦點(diǎn)坐標(biāo)是(±C'°),準(zhǔn)線方程是C,離心率是a,長軸長是2a,短軸長

是2。,焦距是2c,其中c?=a?-b\

重點(diǎn):弄清楚a、b、c分別表示什么意思,并能求出標(biāo)準(zhǔn)方程。

考點(diǎn):雙曲線

尤丁

1.雙曲線標(biāo)準(zhǔn)方程的兩種形式是:a?b'和a2b'(a>0,b>0)。

Yy2_,?2_Cb

2.雙曲線a2產(chǎn)的焦點(diǎn)坐標(biāo)是(±c‘°),準(zhǔn)線方程是c,離心率是a,漸近線方程是a,長軸長

是2",短軸長是2a,焦距是2c。其中c*=a2+b\

3.假設(shè)直線'=履+”與圓錐曲線交于兩點(diǎn)A(xl,yl),B(x2,y2),則弦長為IM=J"+公)(%-/);

4.假設(shè)直線%=陽+'與圓錐曲線交于兩點(diǎn)A(xl,yl),B(x2,y2),則弦長為

1AB|=J(l+/〃2)(必一

lo

重點(diǎn):弄清楚a、b、c分別表示什么意思,并能求標(biāo)準(zhǔn)方程。

考點(diǎn):拋物線

1.拋物線標(biāo)準(zhǔn)方程的四種形式是:曠=2px,/=_2p無,廠=2py,”-=-2py。

2片上

2.拋物線y=2px的焦點(diǎn)坐標(biāo)是:化12。),準(zhǔn)線方程是:2。

重點(diǎn):弄清楚拋物線開口往哪個(gè)方向,然后能求P,從而得出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程。

排列組合、概率統(tǒng)計(jì)

考點(diǎn):分類計(jì)數(shù)法和分步計(jì)數(shù)法

分類計(jì)數(shù)法:完成一件事有兩類方法,第一類方法由m種方法,第二類方法有n種方法,無論用哪一類方法中的哪種方法,都能完

成這件事,則完成這件事總共有m+n種方法。

分步計(jì)數(shù)法:完成一件事有兩個(gè)步驟,第?個(gè)步驟有m種方法,第二個(gè)步驟有n種方法,連續(xù)完成這兩個(gè)步驟這件事才完成,那么

完成這件事總共有mXn種方法。

考點(diǎn):排列和組合的公式

排列(有順序),公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論