數(shù)學(xué)分析十講習(xí)題冊(cè)、課后習(xí)題答案811_第1頁(yè)
數(shù)學(xué)分析十講習(xí)題冊(cè)、課后習(xí)題答案811_第2頁(yè)
數(shù)學(xué)分析十講習(xí)題冊(cè)、課后習(xí)題答案811_第3頁(yè)
數(shù)學(xué)分析十講習(xí)題冊(cè)、課后習(xí)題答案811_第4頁(yè)
數(shù)學(xué)分析十講習(xí)題冊(cè)、課后習(xí)題答案811_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)分析十講習(xí)題冊(cè)、課后習(xí)題答案習(xí)題1-11.計(jì)算下列極限(1),axxaa0;limxaxa解:原式lim[axaaxaaa=xa](ax)|(xa)|xaxaxaxa==aa(lna1)alnaaaaa1(2)limsinxsina;sin(xa)limsinxsina(sinx)'cosaxa解:原式xaxaxa(3)limn2(na12),a0;nan解:原式lim1(na1)2[(ax)']2ln2a1/nax0nn(4),1limn[(1)1]p0;pnn解:原式lim(11n)p1p(xp)|pxpp11x1nx1n(5)lim(1tanx)10(1sinx)10;sinxx0解:原式lim(1tanx)101lim(1sinx)101tanxsinxx0x0=10(1t)9|10(1t)9|20t0t0(6)x1,為正整數(shù);mlimm,nx1nx11(x)'解:原式mmx1x1limx1x1nx1x1nm1(xn)'2.設(shè)f(x)在處二階x可1導(dǎo),計(jì)算x0.limf(xh)2f(x)f(xh)000h2h0解:原式2/40limf(xh)f(xh)limf(xh)f(x)f(x)f(xh)0000002h2hh0h0limf(xh)f(x)limf(xh)f(x)1f(x)1f(x)f(x)00002h2h22000h0h0.,,存在,計(jì)算.f(x)]f(a)1lnxlna3設(shè)a0f(a)0f(a)lim[xa解:f(a)lnf(x)lnf(a)lnxlnalim[f(x)xa1lnxlnalimexa]lnf(x)lnf(a)lnxlnalnf(x)lnf(a)xaelimxaelimxaxalnxlnaf'(a)af(a)e習(xí)題1-21.求下列極限(1)lim(sinx1sinx1);x解:原式,其中在與x11limcos[(x1)(x1)]02xx1之間(2)cos(sinx)cosx;limsin4xx0解:原式===,其中)lim(sinsin(sinxx)sinxx1limx0)()(xx4x36x0在與之間xsinx(3)lim(6x6x56x6x5);解:原式x111[(11)(11)]1156limx[(1)6(1)6]limx(1)xxx6xxx,其中在與1之間16511xlim(1)x113(4)3x11n1);limn2(arctanarctannn3/40解:原式,其中其中在與之111(1n1nn1)11limn212nn間2.設(shè)在處可導(dǎo),,計(jì)算.f(a1)nf(a1)nnf(a)0nf(x)alimn(lnf(a1)lnf(a1))enlimn(lnf(a1n)lnf(a1))lime解:原式nnnnlnf(a1)lnf(a)lnf(a1)lnf(a)f(a)f(a)f(a)f(a)2f(a)ef(a)nlimnn[limen]e11nn習(xí)題1-31.求下列極限(1)(1x)1,0;x0(1x)1lim解:原式xlimxx0(2)1cosxcos2xcosnx;limx01x12解:Ilimlncosxcos2xcosnx2limlncosxlncos2xlncosnx12x2x0x0x22limcosx1cos2x1cosnx1limx2(2x)2(nx)2x2x2x0x0ni2i1(3)lim(1;1xex1)x04/40解:原式e1xlimex1xlimxex1limx12limx0x(ex1)2x2xx0x2x0x0(4);11limx[(1x)x]2xxx解:原式1limx2(ln(1x)lnx)limxln(11)1limx2(ex1exlnx)ln(1x)xxxxxlimx11x2.求下列極限x(1)1cosxlncosx;limx0eex2sinx22x11x221x2解:原式lim22x2x2x0;(2)ln(xex)2sinxx0sin(2tan2x)sin(tan2x)tanxlim解:原式ln(1xex1)2sinxx0sin(2tan2x)sin(tan2x)tanxx0sin(2tan2x)sin(tan2x)tanxxex12sinxlimlimlim4xxx2x2xx4x0習(xí)題1-41.求下列極限(1);1limn(1nsin)2nn解:原式111o())]lim(1o(1))113!6limn[1n(2n3!n3n3nn(2)求;e1x33xlimx0sin6x5/40x6o(x6)x312解:原式x3e1xx33limx02limx6x6x0(3);1lim[xxln(1)]2xx解:原式11o())]11x2lim[xx(2x2x22x(4);1lim(1)exx2xx解:原式11limex[x2ln(1)x]e2x此題已換3.設(shè)在處可導(dǎo),,.f(x)x0f(0)0f(0)0若在時(shí)是比高階的無窮小,af(h)bf(2h)f(0)h0h試確定的值.a,b解:因?yàn)?,f(h)f(0)f(0)ho(h)f(2h)f(0)2f(0)ho(h)所以0limaf(h)bf(2h)2f(0)lim(ab1)f(0)(a2b)f(0)o(h)hhh0h0從而解得:ab10a2b0a2,b13.設(shè)在處二階可導(dǎo),用泰勒公式求f(x)x0f(xh)2f(x)f(xh)limh000h2解:原式0f(x)f'(x)hf''(x))2f(x)f(x)f'(x)hf''(x)0h2o(h120h2o(h)22limh0002!0002!h2limf''(x)h2o(h2)o(h2)f''(x)012h20h04.設(shè)在處可導(dǎo),且求f(0),f(0)sinxf(x))2.xf(x)x0lim(x0x2和1f(x).limx0x6/40解因?yàn)閟inxf(x))limsinxxf(x)2lim(x2xx2x0x0limxo(x2)xf(0)f(0)xo(x)x2x0lim(1f(0))xf(0)x2o(x2)x2x0所以,即1f(0)0,f(0)2f(0)1,f(0)2所以1f(x)lim1f(0)f(0)xo(x)lim2xo(x)2limx0xxxx0x0習(xí)題1-51.計(jì)算下列極限1121n;(1);limnn1解:原式limn1nlimn1n2n1n1nn(2)lim1a2a2nan(a1)nan2n解:原式nanna(n1)a2.設(shè),求(1)n1limlimn1nna2(n1)aaan22n;na2ana1limaalimn2n2nn解:原式nanaanlimlimnnn2(n1)2n2n12,(2)na0,i1,2,,n.limn11aa1ia12n111解:由于,aa1a11nlimaalimn2nnn7/40所以nlimn1a11aaa,求和.3.設(shè)12nxnnxxn1nlim(xx)0limnlimnnnn2n解:因?yàn)?,所以lim(xx)0lim(xx)02n2n2nn2nn且lim(xx)0從而n有stolz定理0,2n12n1xxx2n22limlim2n2n2nnn且x2n1xxlimn2n1limn22n102n1所以,xxxnnxn1xlimnlimlim0limn0n1nn1nn1nnnnn4.設(shè),其中,并且,10x10q1xn1x(1qx)qnn證明:.1limnxqnn證明:因,所以10xq11qx(1qx))211,所以xx(1qx)(11q24qq211,用數(shù)學(xué)歸納法易證,。110x20xnqq又x,從而單調(diào)遞減,1qx1xnn1xn由單n調(diào)有界原理,存在,記limxLlimxnn在兩邊令n,可得nxx(1qx)nlimx0n1nnnn所以limnxlimnlimn111n1xnnxnxn1nxxnxxxx(1qx)lim1qx1limlimqnn1nnnnnxx(1qx)qnnn1nnn習(xí)題1-61.設(shè)在(a,)內(nèi)可導(dǎo),且存在.f(x)f(x)limA,limf(x)xxx8/40證明:limf(x)A.x證明:f(x)Alimf(x)1limxlimf(x)xxx2.設(shè)在(a,)上可微,和存在.limf(x)f(x)limf(x)xx證明:.limf(x)0x記(有限),limf(x)B(有限),則limf(x)A證明:xxAlimf(x)limexf(x)limexf(x)exf(x)ABexexxxx從而B0所以limf(x)0x3.設(shè)在上可導(dǎo),對(duì)任意的0,f(x)(a,),證明:limf(x).lim[f(x)xf(x)]xx證明:因?yàn)?,所以,由廣義羅必達(dá)法limxx則得limf(x)limxf(x)limxxf(x)1f(x)xx1xxxxlim[f(x)f(x)]x4.設(shè)在上存在有界的導(dǎo)函數(shù),證f(x)(a,)明:0.limxxlnxf(x)證明:xxlnxxlnx1,有界,,1f(x)lim0xlnx1f(x)limf(x)lim所以f(x)0f(x)limlimxxlnxxlnx1習(xí)題9/402-1(此題已換)1.若自然數(shù)不是完全平方數(shù),n證明是無理數(shù).n1.證明是無理數(shù)3證明:反證法.假若且互質(zhì),q3(,pqNp,q,)p于是由可知,是的因子,從而得即,3pqqpq1p3222222這與假設(shè)矛盾2.求下列數(shù)集的上、下確界.(1)11nN,n解:supE1,infE0(2)1(1)nN,nn解:supEe,infE2(3)1(1)(1)n1nN,nn解:supE1,infE1(4).21y|yx,x(1,)2解:supE1,infE03.設(shè),驗(yàn)證infE2.Ex|x2,xQ2證明:由得是的一個(gè)下界.xE,x22E22x另一方面,設(shè)也是的下界,由有理數(shù)2E1集在實(shí)數(shù)系中的稠密性,10/40在區(qū)間中必有有理數(shù),則且xx2xE2(2,)1x11不是的下界.按下確界定義,infE2.E4.用定義證明上(下)確界的唯一性.證明:設(shè)為數(shù)集的上確界,即.按定義,supEE有.若也是的上確界且xExE.不妨設(shè),則對(duì)0,xE0有即矛盾.x()x,00下確界的唯一性類似可證習(xí)題2-21.用區(qū)間套定理證明:有下界的數(shù)集必有下確界.證明:設(shè)是的一個(gè)下界,不是的下界,則aEbEab.令,若是的下界,則??;1c(ab)cEac,bb111211若不是的下界,則取.c1Eaa,bc111令,若是的下界,則?。?c(ab)cEac,bb222122112若不是的下界,則?。弧?,cEaa,bc21222按此方式繼續(xù)作下去,得一區(qū)間套,且{[a,b]}nn滿足:11/40是的下界,不是的下界.aEbE(n1,2,)nn由區(qū)間套定理,且limalimb.[a,b]n1,2,nnnnnn下證:infE都有,而,limax(1,2,)xan(1)xEnnn即是的下界.E由于,從而當(dāng)充分大以后,(2),limbnnn有.而不是的下界不是的下界,即是bbEEnn最大下界2.設(shè)在上無界.證明:存在,f(x)[a,b]x[a,b]0使得在的任意鄰域內(nèi)無界.f(x)x0證明:由條件知,在[a,(ab)2]上或[(ab)2,b]上無f(x)界,記使在其上無界的區(qū)間為;再二等分f(x)[a,b]11,[a,b]11記使在其上無界的區(qū)間為,……,繼續(xù)作f(x)[a,b]22下去,得一區(qū)間套,滿足f(x)在上無界.{[a,b]}[a,b](n1,2,)nnnn根據(jù)區(qū)間套定理,,且.x[a,b]n1,2,limalimbxnn00nnnn因?yàn)閷?duì)任意的,存在,當(dāng)時(shí),有0NnN,從而可知f(x)0[a,b](x,x)nn0在上無界(x,x)003.設(shè),在上滿足f(0)0,f(1)0,若f(x)g(x)[0,1]12/40在上連續(xù),在上單調(diào)遞增.g(x)[0,1]f(x)g(x)[0,1]證明:存在,使.f()0[0,1]證明:記且二等分.若,1f()02a0,b1[0,1]11則記若則記.11a0,b1a,b1;f()0,2222122類似地,對(duì)已取得的二等分,若,ab)0n[a,b]nf(n2n則記;若,abab)0nna,bbf(nnn12n1n2則記按此方式繼續(xù)下去,n.abn2aa,bn1nn1得一區(qū)間套,其中f(a)0,f(b)0.{[a,b]}nnnn根據(jù)區(qū)間套定理可知,[a,b],n1,2,3,nn且有.limalimbnnnn因?yàn)樵谏线B續(xù),所以g(a)g(),g(b)g()(n).nng(x)[0,1]注意到可得g(a)f(a)g(a)f(b)g(b)g(b)nnnnnn,g()lim[f(a)g(a)]lim[f(b)g(b)]nnnnnn再由2-3可知f(a)g(a)f()g()f(b)g(b)nnnn,.f()0g()f()g()g()習(xí)題1.證明下列數(shù)列發(fā)散.(1),1n2n1x(1)n1,2,;n2n13/40證因?yàn)?,12n112n24n11,x24n3x2n2n1所以發(fā)散.(n){}xn(2)n,123y(1)nn1,2,.n1nnnn證明:因?yàn)閥1,y2nnn1,(n)12n1222n2n1所以發(fā)散.{y}n2.證明:單調(diào)數(shù)列收斂的充要條件是其存在一個(gè)收斂子列.證明:由收斂數(shù)列與子列的關(guān)系,結(jié)論顯然不妨假設(shè)數(shù)列單調(diào)遞增,且存在收斂{x}子列l(wèi)imxA,nnkk由極限定義對(duì)任意給定的,總存在正整數(shù),當(dāng)kKK110時(shí),,xAn從而k有;AxkAn由于limn,對(duì)任意,存在正整數(shù),nK2K1kk當(dāng)時(shí),,取Nn,kKnn2kk11則任意時(shí)2,AxxxxAnNnNnnk2所以,即limk11xAnxAnn3.設(shè)極限存在,證明:.lim(asinxbcosx)ab0x14/40證明:記lim(asinxbcosx)A由海茵定理,x取,得(1)x2n(n)bAn取,得x2n(n)aA(2)2n取,得,解得2x2n(n)(ab)A2(3)4nabA0(此題取消)4.數(shù)列收斂于的充要條件xan是:其偶數(shù)項(xiàng)子列和奇數(shù)項(xiàng)子列皆收斂于a.(此題改為4)5.已知有界數(shù)列發(fā)散,證xn明:存在兩個(gè)子列和收斂xx(2)(1)nnkk于不同的極限.證明:因?yàn)橛薪?,由致密性定理,必有收斂xn的子列,設(shè).xlimxa(1)(1)nnkkk又因?yàn)椴皇諗?,所以存在,在x0(a,a)n000以外,有的無窮多項(xiàng),xnxx(2)(2)記這無窮多項(xiàng)所成的子列為,顯然有界.nn由致密性定理,必有收斂子列,x(2)nk設(shè),顯然.limxnbba2kk習(xí)題2-515/401.用柯西收斂準(zhǔn)則判定下列數(shù)列的收斂性(1)x111(1)1;n123nn解:1n1n211npxx(1)p1npn1n1n2n3111npn1n11()(1)p1所以,對(duì),即為柯西0,N[1/],nN,xx{x}npnn列(2).xaaqaq2aqn(q1,aM,k0,1,)n012nk解:Mqn1xxaqaqMqn1(1qqp1)n1np1qnpnn1np所以,對(duì),(1q)]/lnq1},nN,xx0,Nmax{1,[lnMnpn即為柯西列{x}n2.滿足下列條件的數(shù)列是不是柯西列?xn(1)對(duì)任意自然數(shù),都有plimxnnx0;np解:不是柯西列,如1,對(duì)任意的自1x1n2n然數(shù),但數(shù)列不收斂。limxx0;npxpnnn(2),(0k1,n2,3,);xxkxxn1nnn1解:xxxxxxxnpnnpnp1np1n1nxxxxxxnpnp1np1np2n1n(knp1knp2k)xxn121xx1kn121k16/40所以,對(duì),即0,N[ln(1k)]/lnk1,nN,xx{x}xxnpnn21為柯西列(3)xxM(n1,2,,M0).k1knk1證明:記,則單調(diào)遞增有上界,nxxSSMnk1knk1從而必有極限,記limSSnn對(duì)0,N,nN,SSn2從而xxxxxxxnpnnpnp1np1n1nxxxxxxSnSn1npnp1np1np2n1np1故是柯西列SSSSn1xnp1n習(xí)題3-11.設(shè)定義在[a,b]上的函數(shù)f(x)在(a,b)內(nèi)連續(xù),且limf(x)和limf(x)存在(有限).問f(x)在(a,b)上是否有xaxb界?是否能取得最值?解:在閉區(qū)間[a,b]上構(gòu)造輔助函數(shù)f(x),x(a,b),g(x)f(a),xa,f(b),xb.則g(x)在[a,b]上連續(xù),從而g(x)在[a,b]上有界.由于g(x)f(x)(axb),故17/40在上也有界,即存在,使得f(x)(a,b)M01.f(x)M,x(a,b)1令,則有f(x)M,x[a,b].MmaxMf(a),f(b)1,條件同上,但在上卻不一定能取得極值.f(x)(a,b)例如:f(x)x,x(a,b)2.設(shè)在內(nèi)連續(xù),且limf(x).證明在f(x)(,)f(x)x(,)內(nèi)可取得最小值.證明:因?yàn)閘imf(x),所以,當(dāng)xA時(shí),有A0xf(x)f(0)因?yàn)閘imf(x),所以,當(dāng)xB時(shí),有B0f(x)f(0)x從而當(dāng)時(shí),有f(x)f(0)x(,A)(B,)又f(x)在[A,B]連續(xù),從而一定可以取到最小值,m即,使當(dāng)x[A,B]時(shí),y[A,B]0且;mf(y)f(x)mf(y)f(0)00故時(shí),有x(,A)(B,)f(x)f(0)f(y)0所以f(x)在處取到最小值y0習(xí)題3-2(此題已換)1.設(shè),,,.證明:aaa0bbb312312方程在和內(nèi)恰好各有一axbxbxbaa3012(b,b)(b,b)122312318/40個(gè)實(shí)根.1.證明開普勒(Kepler)方程有xsinxa01唯一實(shí)根證明:令,則在連續(xù)且f(x)xsinxaf(x)[a1,a1],,f(a1)1sin(a1)0f(a1)1sin(a1)0由零點(diǎn)原理,使,即方程(a1,a1)f()0至少有一實(shí)根xsinxa又,所以在單調(diào)遞增,f'(x)1cosx0f(x)(,)所以方程有唯一實(shí)根xsinxa(此題已換)2.設(shè)函數(shù)在()內(nèi)連續(xù)f(x)a,b且有極值點(diǎn).證明:存在使得x,x(a,b),xx,1212f(x)f(x).122.設(shè),討論方程實(shí)根的個(gè)數(shù)a0eaxx2解:step1.令,則f(x)eaxx2,由零點(diǎn)原理,在至limf(x),limf(x)f(0)1f(x)0(,0)xx0少有一實(shí)根,又,所以在f'(x)e2ax0(x(,0))f(x)x單調(diào)遞增,從而方程在內(nèi)有且(,0)eaxx(,0)2僅有一實(shí)根。step2.令,則limg(x),limg(x),且g(x)exx2x0x,所以g'(x)ex(x2)x3當(dāng)0x2時(shí),函數(shù)單調(diào)遞減;當(dāng)2x時(shí),g(x)19/40函數(shù)單調(diào)遞增,所以函數(shù)在點(diǎn)取得極小g(x)g(x)x2值。所以,當(dāng)2時(shí),方程g(x)a在(0,)無e0ae42g(2)4解;當(dāng)時(shí),在(0,)有一解;當(dāng)時(shí),ee22ag(x)aag(x)a44在(0,)有兩解綜上:當(dāng)時(shí),方程有一解;當(dāng)ae240aeeax2x24時(shí),有兩解;當(dāng)時(shí),有三解e2eaxaeaxx2x243.設(shè)在上連續(xù),x[a,b],limf(x)A.證明存f(x)[a,b]nnn在使.f()A[a,b]證法1因?yàn)閒(x)在[a,b]上連續(xù),所以存在最大值M和最小值,且使mf(x)M,從而有mAlimf(x)M.mnnn由介值定理知[a,b],使.f()A證法2因?yàn)橛薪纾源嬖谑諗孔恿衳n.而f(x)在[a,b]上連續(xù),故有x[a,b](k)nkf()limf(x)limf(x)Anknkn習(xí)題10-21.設(shè)在上連續(xù),n2為自然數(shù).證明:0,1fx(1)若f(0)f(1),則存在使得n1f()f(1);[0,],nn證明:令,則F(x)C[0,,且F(x)f(x)f(x1)nn1]n20/40,,F(xiàn)(0)f(0)f(1)nF()f()f()112,F(n1)f(n1)f(1)nnnnn從而F(0)F()F(n1)01nn若,使,取即可iii{0,1,2,,n1}F()0nn否則,使,由零點(diǎn)原理,ijF()F()0ij{0,1,2,,n1}nn或,使(i,j)ji(,)nnF()0nn綜上,,使,即[0,n1]f()f(1)F()0nn(2)若f(0)0,f(1)1,則存在(0,1),使得1f()f(1).nn解:取11,方法同上F(x)f(x)f(x)nn2.設(shè)在上連續(xù),且a,bbf(x)dx1,bxf(x)dx,bx2f(x)dx2.f(x)證明:存在使[a,b],aaaf()0.證:由已知經(jīng)計(jì)算得b(x)2f(x)dx0a1)若或,由積分中值定理,,使(a,b)ab,從而f()0()f()022)否則,,abb(x)2f(x)dx(x)2f(x)dxb(x)2f(x)dx0(x)f(x)dxb(x)2f(x)dx0aaa)若,同1),由積分中2a值定理21/40,使f()f()0(a,),(,b)1212b)與異號(hào),由中值定理,b(x)f(x)dx(x)f(x)dx22a(a,),(,b)12使,且b(x)f(x)dx(2(x)f(x)dx()f())f()2221122a所以,有零點(diǎn)原理,使(,)(a,b)f()0f()f()012123.設(shè)xcosxcosx,求證f(x)cosnxcosn12n(1)對(duì)任意自然數(shù),方程在內(nèi)有唯[0,)3nf(x)1n一實(shí)根;證明:時(shí),在上有唯一實(shí)根[0,)n1f(x)cosx1x031時(shí),有,且,由零102n1n1f(0)1n10f()13nn點(diǎn)存在原理,,使,即在上有一實(shí)根(0,)3x(0,)nf(x)1f(x)13nnn又n2x2cosx1)(sinx)0,故f'(x)(ncosx(n1)cosn1n嚴(yán)格單調(diào)遞減,所以方程在內(nèi)有唯[0,)3f(x)nf(x)1n一實(shí)根(2)設(shè)是的根,則.x[0,)f(x)1limx33nnnn證:對(duì),,從而,x0f(x)f(x)nf(x)1f(x)f(x)n1n1n1n1nnn有因?yàn)閲?yán)格單調(diào)遞減,故,即嚴(yán)格單f(x)n1xx{x}nn1n調(diào)遞增。又有界,所以收斂。{x}n{x}n22/40設(shè),由于,所以,在limxAx(0,)limcos()0xn3nnnnn1f(x)cosnxcosn1xcos2xcosxnnnnnn,令,有,所以,cosxcosnxcosA1cosA12n1cosAnn1cosxn即Alimx33nn4.設(shè)在[a,b]上連續(xù),不恒為常數(shù),且f(x).證明存在,使f(a)minf(x)f(b)(a,b)x[a,b].f(t)dt(a)f()a證:令,因?yàn)閒(x)在[a,b]上連續(xù),F(xiàn)(x)f(t)dt(xa)f(x)x不恒為常數(shù)a,且f(a)minf(x)f(b),所以,使x(a,b)0f(x)maxf(x),于是x[a,b]0x[a,b],F(xiàn)(x)f(t)dt(xa)f(x)x0[f(t)f(x)]dt0x00000aa,由零點(diǎn)原理:F(b)bf(t)dt(ba)f(b)b[f(t)f(b)]dt0aa證明存在,使,即.F()0(x,b)(a,b)f(t)dt(a)f()0a習(xí)題4-11.證明函數(shù)f(x)沒有原函數(shù).x,x01,x0證:設(shè)f(x)存在原函數(shù)F(x),即F'(x)f(x),則F'(0)f(0)1且,由于,由達(dá)布定理,11113F'()f()F'()F'(0)24222,使3,矛盾,所以f(x)無原(0,1)F'()f()4223/40函數(shù)2.設(shè)在[a,b]上可導(dǎo),證明:x,x[a,b].12f(x)(1)若則存在使[a,b]f()0;f(x)f(x)0,12證明:若,則取或均可;否則f(x)f(x)0x1x212,又達(dá)布定理,存在介于與之間,f(x)f(x)0x1x212使綜上存在使f()0;f()0[a,b](2)若則存在使[a,b]f().f(x)f(x),212證明:若,則取或均可;否則f(x)f(x)x1x2212,由達(dá)布定理,存在介于與之[f(x)1][f(x)2]0x1x222間,使;f()2綜上存在使f()2[a,b]習(xí)題4-21.求下列函數(shù)的導(dǎo)函數(shù),并討論導(dǎo)函數(shù)的連續(xù)性.(1)f(x)(x1);3解:f(x),則在連續(xù),且(x1)3,x1fx()x1(x1)3,x1x1時(shí),f'(x)3(x1),limf'(x)0,從而f'(1)021x1時(shí),f'(x)3(x1),xlimf'(x)0,從而所以f'(1)02x1f'(1)024/40從而在連續(xù)。f'(x)x1所以f'(x)在連續(xù)3(x1)2,x1(,)3(x1)2,x1(2)f(x);x2,x0x2,x0解:顯然f(x)在連續(xù),且x1x0時(shí),f'(x)2x,limf'(x)0,從而;f'(0)0x0時(shí),f'(x)2x,xlim0f'(x)0,從而所以f'(0)0f'(0)0x0從而在連續(xù)。f'(x)x0所以f'(x)在連續(xù)(,)2x,x02x,x02.設(shè)f(x)xksin1,x0.當(dāng)分別滿足什么條件kx0,x0時(shí),(1)f(x)在x0處連續(xù);解:f(0)limf(x),即,所以k01limxsin0kxx0x0(2)f(x)在x0處可導(dǎo);解:limf(x)f(0)存在,即1存在,所以k1limxsinx0k1xxx0(3)在處連續(xù)?f(x)x0解:f'(x)kxsin1xcos1,x0,由,即k1k2ffx'(0)lim'()xxx0x00,lim(kxk1sin1xk2cos1)0,所以k2xxx025/403.分別用兩種方法證明符號(hào)函數(shù)不存在原函數(shù).證明:法一設(shè)存在原函數(shù),即F'(x)sgn(x),則F'(1)sgn(1)1sgn(x)F(x)且F'(1)sgn(1)1,由于,由達(dá)布定理,1F'(1)F'(1)2,使1,矛盾,所以無原F'()sgn()sgn(x)(1,1)2函數(shù)法二由單側(cè)導(dǎo)數(shù)極限定理,導(dǎo)函數(shù)不存在第一類間斷點(diǎn),而有第一類間斷點(diǎn)x0,從而sgn(x)無原函數(shù)sgn(x)習(xí)題5-1.1.設(shè)函數(shù)在[0,)上可導(dǎo).f(x)(1)若f(0)1,f(x)e.證明存在x0使;ex0xf(x)0證明:令F(x)f(x)e,則F(x)D[0,),且0,limF(x)F(0)0xlimF(x)0,由廣義洛爾定理,x(0,)使x0F'(x)0,即00xf'(x)ex(0,所以f(x)ex0002)若,0證明存在使得;(n)n1xn0f(x)f(),且F(x)D[0,)0eex證明:令,則F(x)f(x)xnexlimF(x)F(0)0,limF(x)0,由廣義洛爾定理,(0,)x0使,即xF'()0,所以0nenef()n1e(n)f()n1e226/40習(xí)題5-21.設(shè)在[0,1]上可導(dǎo),且f(1)1xf(x)dx,其中1f(x)0為常數(shù).證明:存在,使.'(0,1)f()f()證明:由積分中值定理,,使x(0,1)0f(1)1xf(x)dxxf(x)0f(x),則F(x)D[0,1]00令,且,由洛爾定F(x)xF(1)F(x)0理,,(x,1)(0,1)0使,即,從而f()f()'1f()f'()0F'()02.設(shè)在[0,1]上可導(dǎo),且f(x)f(x)dx.證明:存f(1)1xe1x0在,使(0,1)1f'()(1)f().證明:由積分中值定理,,使x(0,1)0f(1)1xef(x)dxxe1x0f(x)1x000令f(x),則F(x)D[0,1],且,由洛爾定F(x)xe1xF(1)F(x)0理,,使,即,e1f()e1f()e1f'()0(x,1)(0,1)F'()00從而1f'()(1)f().3.設(shè)在上可導(dǎo),且f(x)sinxdx0.證明:存f(x)[0,]220在使(0,)227/40f()f'()tan.證明:由積分中值定理,,使x(0,)2002f(x)sinxdxf(x)sinx000令,則,且,由洛爾F(x)f(x)sinxF(x)D[0,]F(0)F(x)20定理,,使,即,從而f()cosf'()sin0(0,x)(0,)F'()020f()f'()tan.習(xí)題6-11.若在區(qū)間上是凸函數(shù),證明對(duì)任意四點(diǎn)f(x)I,有ts.其逆是否f(t)f(s)f(v)f(u)s,t,u,vIstuvvu成立?證明:因?yàn)樵趨^(qū)間上是凸函數(shù),由三弦不等f(x)I式ts,且f(t)f(s)f(u)f(t)ut,所以成立。其逆f(t)f(s)f(v)f(u)tsvuf(u)f(t)f(v)f(u)utvu成立28/402.設(shè)均為區(qū)間上的凸函數(shù),證明:f(x),g(x)I也是上凸函數(shù)..F(x)maxf(x),g(x)I證明:設(shè),則對(duì)x,xI,有(0,1)12,且f[x(1)x]f(x)(1)f(x)F(x)(1)F(x)121212,從而g[x(1)x]g(x)(1)g(x)F(x)(1)F(x)121212F(x(1)x)max{f[x(1)x],g[x(1)x]}121212,由凸函數(shù)的定義,F(xiàn)(x)maxf(x),g(x)F(x)(1)F(x)12也是上凸函數(shù)I習(xí)題6-21.驗(yàn)證下列函數(shù)是(嚴(yán)格)凸函數(shù).(1)f(x)xlnx,x(0,);解:,(),所以是1f'(x)lnx1f''(x)0x(0,)f(x)(0,)x上的嚴(yán)格凸函數(shù)(2)f(x)lnsinx,x(0,);x解:,(),1sin2xx2f'(x)cotx1f''(x)csc2x0x(0,)xsinxxx222所以是上的嚴(yán)格凹函數(shù)f(x)(0,)習(xí)題6-31.證明不等式(1)xyxyxyx0,y0,,1;(),22證:設(shè)f(t)t,則(),所以f(t)f''(t)(1)t20t(0,)是上的嚴(yán)格凸函數(shù);從而xy(0,),有(0,),即f(xy)f(x)f(y)xyxy)22(22(2)abc0,0,0;abc(abc)aabbcc,3證:設(shè)f(t)tlnt,則(),所以是1f''(t)0t(0,)f(t)t(0,)上的嚴(yán)格凸函數(shù);從而a,b,c(0,),有f(abc)f(a)f(b)f(c),可得33,即3,aabbccabcln(abc1)(alnablnbclnc)abc)abc(333又因?yàn)椋?abc)abcabc(3abc)abc(abc)3330/40abc(abc)aabbcc3習(xí)題9-11.求下列函數(shù)項(xiàng)級(jí)數(shù)的收斂域(1);xn1x2nn1解:,從而當(dāng)x1時(shí),,u(x)1xu(x)1xu(x)x12nxlimn1n1u(x)2n2nnn級(jí)數(shù)絕對(duì)收斂;當(dāng)x1時(shí),lim,級(jí)數(shù)絕u(x)1n1u(x)1xnn對(duì)收斂;當(dāng)x1時(shí),發(fā)散;當(dāng)x1時(shí),發(fā)12(1)2nn1n1散,所以,級(jí)數(shù)的收斂域?yàn)閤1(2).2nxn1(3x)n(x1)3n1解:,所以n1u(x)1(3x)n2xn1n1u(x)1(3x)2nxnn1n當(dāng)x1時(shí),,級(jí)數(shù)發(fā)散;當(dāng)1u(x)21x23limn1u(x)33nn時(shí),,級(jí)數(shù)發(fā)散;當(dāng)2x2時(shí),u(x)2limnn1u(x)13x3n21,級(jí)數(shù)絕對(duì)收斂;當(dāng)x2時(shí),3xu(x)limnn1u(x)n,級(jí)數(shù)絕對(duì)收斂;當(dāng)x1時(shí),級(jí)數(shù)u(x)11limnn1u(x)33n122n()n2()n發(fā)散;當(dāng)2時(shí),級(jí)數(shù)發(fā)散;當(dāng)n331(2)nx23n1n131/40時(shí),級(jí)數(shù)收斂;2(2)nnx21(6)nn1所以原級(jí)數(shù)的收斂域?yàn)?x3習(xí)題9-21.證明函數(shù)項(xiàng)級(jí)數(shù)在上一x[1(n1)x](1nx)[1,)n1致收斂.證明:u(x),從而1x[1(n1)x][1nx]1(n1)x1nx1n11x1x12x1111(n1)x1nx11nxS(x)1n11nx1nx所以對(duì)任意的,x[1,)S(x)limS(x)1nn由S(x)S(x)1,得對(duì)0,取,11nx1nn11Nn當(dāng)nN時(shí),對(duì)任意的成立,因此,S(x)S(x)1x[1,)nn在x[1(n1)x](1nx)n1[1,)上一致收斂到S(x)1.2.設(shè)在區(qū)間上一致收斂于,且對(duì)任意xIf(x)If(x)n有.試問是否存在,使當(dāng)時(shí),對(duì)任意f(x)ANnNxI有?f(x)An解:答案不正確;例f(x)arctanx在(1,)內(nèi)一致nn1n32/40收斂到f(x)arctanx,且,有;但,和x(1,)f(x)arctanxNnN1N40,使xtan(2N3)1f(x)arctanx0N1(2N3)N28N84n08N8100nn00習(xí)題9-31.利用定理9.3.1'證明下列函數(shù)項(xiàng)級(jí)數(shù)不一致收斂.(1),,x[0,1](1x)xnn0證:,級(jí)數(shù)的部分和S(x)1xn,u(x)xxC[0,1]nn1nn從而,在不連續(xù),故級(jí)數(shù)1x[0,1)0x1S(x)limS(x)()Sx[0,1]nn不一致收斂。(2),x[0,1].x2(1x)2nn0證:,級(jí)數(shù)的部分和x2u(x)(1x)C[0,1]n2n0x0,S(x)n11x2(1x)x(0,1]2n1從而,在不連續(xù),Sx()[0,1]0x0S(x)limS(x)n1xx(0,1]2n故級(jí)數(shù)不一致收斂。33/402.設(shè)試問在上是否一致收nxS(x).S(x)[0,1]21nx2nn斂?是否有l(wèi)imS(x)dxblimS(x)dx?bnnnana解:對(duì)x[0,1],S(x)limS(x)0,但對(duì)1,02nnN,nN,都,使,所以在上11x[0,1]S(x)S(x)Sx()[0,1]20nnn不一致收斂另外lim1S(x)dxlim10,nxdxlimln(1n2)1n2x2nn2n0n0n,所以1limS(x)dx10dx0limbS(x)dxblimS(x)dxnnn0n0naan3.設(shè)試問在上是否一致xS(x).S(x)(,)21nx2nn收斂?是否有?其中l(wèi)imS(x)limS(x)nnnnx(,).解:對(duì)x(,),有,從而1n2x2(1n2x2)2S'(x)nS'(x)limS'(x)10xx00nn但對(duì)3,N,nN,都,使20x(,)25n0S'(x)S'(x)325n所以在上不一致收斂S'(x)(,)n1x0,又0,xlimS'(x)nlimS(x)limn0x01n2xnn2n34/40所以limS(x)limS(x)nnnn4.求的收斂域,并討論和函數(shù)的1S(x)(x)nnn1連續(xù)性.解:設(shè),則,有根11u(x)(x)limu(x)limxxnnnnnnnn值判別法,當(dāng)時(shí),級(jí)數(shù)絕對(duì)收斂;當(dāng)時(shí),x1x1級(jí)數(shù)發(fā)散;當(dāng)時(shí),級(jí)數(shù)發(fā)散;所以級(jí)數(shù)的收x1斂域?yàn)閤1。對(duì),總,使,從而x(1,1)0x(1,1)(1,1)00u(x)在n上連續(xù),且在一致收斂,(1,1)(1,1)S(x)u(x)nn1從而S(x)在上連續(xù),故S(x)在上連續(xù),由得(1,1)x0x(1,1)0S(x)在(1,1)上連續(xù)習(xí)題9-41.討論下列函數(shù)序列在指定區(qū)間上的一致收斂性.(1),x(0,);S(x)xenxn解:對(duì),x(0,)S(x)limS(x)limxenx0nnn又S(x)xe在處取得最大值,從而對(duì)11x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論