2022年甘肅省定西市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第1頁
2022年甘肅省定西市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第2頁
2022年甘肅省定西市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第3頁
2022年甘肅省定西市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第4頁
2022年甘肅省定西市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年甘肅省定西市普通高校對口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.A.11B.99C.120D.121

2.已知互為反函數(shù),則k和b的值分別是()A.2,

B.2,

C.-2,

D.-2,

3.設(shè)是l,m兩條不同直線,α,β是兩個(gè)不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m

B.若l//α,m⊥l,則m⊥α

C.若l//α,m//α,則l//m

D.若l⊥α,l///β則a⊥β

4.下列函數(shù)為偶函數(shù)的是A.

B.

C.

D.

5.設(shè)x∈R,則“x>1”是“x3>1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

6.直線2x-y+7=0與圓(x-b2)+(y-b2)=20的位置關(guān)系是()A.相離B.相交但不過圓心C.相交且過圓心D.相切

7.A.2B.3C.4D.5

8.拋物線y2-4x+17=0的準(zhǔn)線方程是()A.x=2B.x=-2C.x=1D.x=-1

9.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},則A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}

10.集合M={a,b},N={a+1,3},a,b為實(shí)數(shù),若M∩N={2},則M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}

11.設(shè)復(fù)數(shù)z滿足z+i=3-i,則=()A.-1+2iB.1-2iC.3+2iD.3-2i

12.若一幾何體的三視圖如圖所示,則這個(gè)幾何體可以是()A.圓柱B.空心圓柱C.圓D.圓錐

13.“x=-1”是“x2-1=0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

14.已知等差數(shù)列的前n項(xiàng)和是,若,則等于()A.

B.

C.

D.

15.A.10B.5C.2D.12

16.點(diǎn)A(a,5)到直線如4x-3y=3的距離不小于6時(shí),則a的取值為()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)

17.設(shè)f(g(π))的值為()A.1B.0C.-1D.π

18.若是兩條不重合的直線表示平面,給出下列正確的個(gè)數(shù)()(1)(2)(3)(4)A.lB.2C.3D.4

19.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c已知a=,c=2,cosA=2/3,則b=()A.

B.

C.2

D.3

20.不等式組的解集是()A.{x|0<x<2}

B.{x|0<x<2.5}

C.{x|0<x<}

D.{x|0<x<3}

二、填空題(10題)21.

22._____;_____.

23.函數(shù)y=3sin(2x+1)的最小正周期為

。

24.在△ABC中,若acosA=bcosB,則△ABC是

三角形。

25.

26.1+3+5+…+(2n-b)=_____.

27.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為

。

28.不等式的解集為_____.

29.五位同學(xué)站成一排,其中甲既不站在排頭也不站在排尾的排法有_____種.

30.算式的值是_____.

三、計(jì)算題(10題)31.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.

32.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。

33.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).

34.求焦點(diǎn)x軸上,實(shí)半軸長為4,且離心率為3/2的雙曲線方程.

35.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

36.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

37.在等差數(shù)列{an}中,前n項(xiàng)和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.

38.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

39.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

40.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.

四、簡答題(10題)41.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程

42.已知雙曲線C的方程為,離心率,頂點(diǎn)到漸近線的距離為,求雙曲線C的方程

43.在1,2,3三個(gè)數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)中,隨機(jī)抽取一個(gè)數(shù),求:(1)此三位數(shù)是偶數(shù)的概率;(2)此三位數(shù)中奇數(shù)相鄰的概率.

44.已知a是第二象限內(nèi)的角,簡化

45.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時(shí),判斷函數(shù)的單調(diào)性并加以證明。

46.證明:函數(shù)是奇函數(shù)

47.以點(diǎn)(0,3)為頂點(diǎn),以y軸為對稱軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。

48.化簡

49.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.

50.已知集合求x,y的值

五、解答題(10題)51.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.點(diǎn)M為線段AB上的一動點(diǎn),過點(diǎn)M作直線a丄AB.令A(yù)M=x,記梯形位于直線a左側(cè)部分的面積S=f(x).(1)求函數(shù)f(x)的解析式;(2)作出函數(shù)f(x)的圖象.

52.如圖,在四棱錐P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求證:DC丄平面PAC;(2)求證:平面PAB丄平面PAC.

53.已知函數(shù)f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[-π/6,π/4]上的最大值和最小值.

54.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

55.已知函數(shù)f(x)=ex(ax+b)—x2—4x,曲線:y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.(1)求a,b的值;(2)討論f(x)的單調(diào)性,并求f(x)的極大值.

56.已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.(1)求通項(xiàng)公式an;(2)設(shè)bn=2an求數(shù)列{bn}的前n項(xiàng)和Sn.

57.已知等差數(shù)列{an}的前72項(xiàng)和為Sn,a5=8,S3=6.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{an}的前k項(xiàng)和Sk=72,求k的值.

58.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

59.設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).(1)若曲線y=f(x)在點(diǎn)(2,f(x))處與直線y=8相切,求a,b的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

60.

六、單選題(0題)61.設(shè)集合,,則()A.A,B的都是有限集B.A,B的都是無限集C.A是有限集,B是無限集D.B是有限集,A是無限集

參考答案

1.C

2.B因?yàn)榉春瘮?shù)的圖像是關(guān)于y=x對稱,所以k=2.然后把一式中的x用y的代數(shù)式表達(dá),再把x,y互換,代入二式,得到m=-3/2.

3.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對于A:l與m可能異面,排除A;對于B;m與α可能平行或相交,排除B;對于C:l與m可能相交或異面,排除C

4.A

5.C充分條件,必要條件,充要條件的判斷.由x>1知,x3>1;由x3>1可推出x>1.

6.D由題可知,直線2x-y+7=0到圓(x-b)2+(y-b)2=20的距離等于半徑,所以二者相切。

7.D向量的運(yùn)算.因?yàn)樗倪呅蜛BCD是平行四邊形,

8.D

9.B集合的運(yùn)算.由CuB={1,3,5}得B={2,4},故A∩B={2}.

10.D集合的運(yùn)算.∵M(jìn)∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M(jìn)={a,b},∴b=2.AUB={1,2,3}.

11.C復(fù)數(shù)的運(yùn)算.由z+i=3-i,得z=3-2i,∴z=3+2i.

12.B幾何體的三視圖.由三視圖可知該幾何體為空心圓柱

13.A命題的條件.若x=-1則x2=1,若x2=1則x=±1,

14.D設(shè)t=2n-1,則St=t(t+1+1)=t(t+2),故Sn=n(n+2)。

15.A

16.C

17.B值的計(jì)算.g(π)=0,f(g(π))=f(0)=0

18.B若兩條不重合的直線表示平面,由直線和平面之間的關(guān)系可知(1)、(4)正確。

19.D解三角形的余弦定理.由余弦定理,得5=b2+22-2×b×2×2/3,解得b=3(b=1/3舍去),

20.C由不等式組可得,所以或,由①可得,求得;由②可得,求得,綜上可得。

21.60m

22.2

23.

24.等腰或者直角三角形,

25.π/4

26.n2,

27.

,由于CC1=1,AC1=,所以角AC1C的正弦值為。

28.-1<X<4,

29.72,

30.11,因?yàn)?,所以值?1。

31.

32.

33.

34.解:實(shí)半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

35.

36.

37.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

38.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

39.

40.

41.點(diǎn)M是線段PB的中點(diǎn)又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為

42.

43.1,2,3三個(gè)數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)共有(1)其中偶數(shù)有,故所求概率為(2)其中奇數(shù)相鄰的三位數(shù)有個(gè)故所求概率為

44.

45.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)

46.證明:∵∴則,此函數(shù)為奇函數(shù)

47.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)

48.

49.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=

50.

51.

52.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論