版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年云南省麗江市普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.B.C.D.
2.5人排成一排,甲必須在乙之后的排法是()A.120B.60C.24D.12
3.已知互為反函數(shù),則k和b的值分別是()A.2,
B.2,
C.-2,
D.-2,
4.若一個幾何體的正視圖和側(cè)視圖是兩個全等的正方形,則這個幾何體的俯視圖不可能是()A.
B.
C.
D.
5.某四棱錐的三視圖如圖所示,該四棱錐最長棱的棱長為()A.1
B.
C.
D.2
6.已知集合A={x|x>2},B={x|1<x<3},則A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}
7.已知A(3,1),B(6,1),C(4,3)D為線段BC的中點,則向量AC與DA的夾角是()A.
B.
C.
D.
8.A.B.C.D.
9.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]
10.橢圓x2/16+y2/9的焦點坐標(biāo)為()A.(,0)(-,0)
B.(4,0)(-4,0)
C.(3,0)(-3,0)
D.(7,0)(-7,0)
11.
12.已知i是虛數(shù)單位,則1+2i/1+i=()A.3-i/2B.3+i/2C.3-iD.3+i
13.已知a=(1,2),則2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)
14.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},則A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}
15.已知過點A(0,-1),點B在直線x-y+1=0上,直線AB的垂直平分線x+2y-3=0,則點B的坐標(biāo)是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)
16.若函數(shù)f(x)=x2+mx+1有兩個不同的零點,則實數(shù)m的取值范圍是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)
17.已知拋物線方程為y2=8x,則它的焦點到準(zhǔn)線的距離是()A.8B.4C.2D.6
18.A.2B.1C.1/2
19.A.B.C.D.
20.設(shè)Sn為等差數(shù)列{an}的前n項和,S8=4a3,a7=-2,則a9等于()A.-6B.-4C.-2D.2
二、填空題(10題)21.若△ABC中,∠C=90°,,則=
。
22.設(shè)A=(-2,3),b=(-4,2),則|a-b|=
。
23.若長方體的長、寬、高分別為1,2,3,則其對角線長為
。
24.若l與直線2x-3y+12=0的夾角45°,則l的斜線率為_____.
25.當(dāng)0<x<1時,x(1-x)取最大值時的值為________.
26.某程序框圖如下圖所示,該程序運行后輸出的a的最大值為______.
27.如圖所示的程序框圖中,輸出的S的值為______.
28.在△ABC中,AB=,A=75°,B=45°,則AC=__________.
29.
30.秦九昭是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項式求值的秦九昭算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九昭算法求某多項式值的一個實例,若輸入n,x的值分別為3,4,則輸出v的值為________.
三、計算題(10題)31.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
32.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
33.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).
34.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
35.解不等式4<|1-3x|<7
36.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
37.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
38.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
39.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
40.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
四、簡答題(10題)41.等比數(shù)列{an}的前n項和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當(dāng)a1-a3=3時,求Sn
42.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.
43.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
44.已知函數(shù):,求x的取值范圍。
45.以點(0,3)為頂點,以y軸為對稱軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。
46.已知的值
47.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
48.求經(jīng)過點P(2,-3)且橫縱截距相等的直線方程
49.在拋物線y2=12x上有一弦(兩端點在拋物線上的線段)被點M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.
50.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC
五、解答題(10題)51.已知橢圓的兩焦點為F1(-1,0),F2(1,0),P為橢圓上的一點,且2|F1F2|PF1|+|PF2|.(1)求此橢圓的標(biāo)準(zhǔn)方程;(2)若點P在第二象限,∠F2F1P=120°,求△PF1F2的面積.
52.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項和公式.
53.設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).(1)若曲線y=f(x)在點(2,f(x))處與直線y=8相切,求a,b的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.
54.已知遞增等比數(shù)列{an}滿足:a2+a3+a4=14,且a3+1是a2,a4的等差中項.(1)求數(shù)列{an}的通項公式;(2)若數(shù)列{an}的前n項和為Sn,求使Sn<63成立的正整數(shù)n的最大值.
55.已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.(1)當(dāng)直線l過圓心C時,求直線l的方程;(2)當(dāng)直線l的傾斜角為45°時,求弦AB的長.
56.已知函數(shù)f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[-π/6,π/4]上的最大值和最小值.
57.
58.已知函數(shù)f(x)=x2-2ax+a,(1)當(dāng)a=2時,求函數(shù)f(x)在[0,3]上的值域;(2)若a<0,求使函數(shù)f(x)=x2-2ax+a的定義域為[―1,1],值域為[一2,2]的a的值.
59.
60.
六、單選題(0題)61.若一個幾何體的正視圖和側(cè)視圖是兩個全等的正方形,則這個幾何體的俯視圖不可能是()A.
B.
C.
D.
參考答案
1.B
2.C
3.B因為反函數(shù)的圖像是關(guān)于y=x對稱,所以k=2.然后把一式中的x用y的代數(shù)式表達(dá),再把x,y互換,代入二式,得到m=-3/2.
4.C幾何體的三視圖.由題意知,俯視圖的長度和寬度相等,故C不可能.
5.C四棱錐的直觀圖.四棱錐的直觀圖如圖所示,PC⊥平面ABCD,PC=1,底面四邊形ABCD為正方形且邊長為1,最長棱長
6.C集合的運算.由已知條件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}
7.C
8.B
9.B
10.A橢圓的定義c2=a2-b2=7,所以c=,所以焦點坐標(biāo)為(,0)(-,0).
11.C
12.B復(fù)數(shù)的運算.=1+2i/1+i=(1+2i)(1-i)f(1+i)(1-i)=l-i+2i-2i2/1-i2=3+i/2
13.B平面向量的線性運算.=2(1,2)=(2,4).
14.B集合的運算.由CuB={1,3,5}得B={2,4},故A∩B={2}.
15.B由于B在直線x-y+1=0上,所以可以設(shè)B的坐標(biāo)為(x,x+1),AB的斜率為,垂直平分線的斜率為,所以有,因此點B的坐標(biāo)為(2,3)。
16.C一元二次方程的根的判別以及一元二次不等式的解法.由題意知,一元二次方程x2+mx+1=0有兩個不等實根,可得△>0,即m2-4>0,解得m>2或m<-2.故選C
17.B拋物線方程為y2=2px=2*4x,焦點坐標(biāo)為(p/2,0)=(2,0),準(zhǔn)線方程為x=-p/2=-2,則焦點到準(zhǔn)線的距離為p/2-(-p/2)=p=4。
18.B
19.A
20.A等差數(shù)列的性質(zhì).由S8=4a3知:S8=a1+a2+a3+...+a8=4(a1+a8)=4(a3+a6)=4a3.a6=0,所以a7-a6=d=-2.所以a9=a7+2d=-2-4=-6.
21.0-16
22.
。a-b=(2,1),所以|a-b|=
23.
,
24.5或,
25.1/2均值不等式求最值∵0<
26.45程序框圖的運算.當(dāng)n=1時,a=15;當(dāng)時,a=30;當(dāng)n=3,a=45;當(dāng)n=4不滿足循環(huán)條件,退出循環(huán),輸出a=45.
27.11/12流程圖的運算.分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案為:11/12
28.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
29.33
30.100程序框圖的運算.初始值n=3,x=4,程序運行過程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循環(huán),輸出v的值為100.
31.
32.
33.
34.
35.
36.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時,y=-4∴直線l在y軸上的截距為-4
37.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
38.
39.
40.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
41.
42.(1)(2)
43.由已知得:由上可解得
44.
X>4
45.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)
46.
∴∴則
47.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
48.設(shè)所求直線方程為y=kx+b由題意可知-3=2k+b,b=解得,時,b=0或k=-1時,b=-1∴所求直線為
49.∵(1)這條弦與拋物線兩交點
∴
50.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
51.
52.(1)設(shè)等差數(shù)列{an}的公差為d因為a3=-6,a5=0,所以解得a1=-10,d=2所以an=-10+(n-1)×2=2n-12.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度藥品研發(fā)項目質(zhì)量監(jiān)督與醫(yī)療器械研發(fā)合作合同3篇
- 《湖南師范大學(xué)》課件
- 意義未明的單克隆免疫球蛋白病病因介紹
- 新疆警察學(xué)院《材料成型工藝與裝備》2023-2024學(xué)年第一學(xué)期期末試卷
- 污水處理廠bot項目特許經(jīng)營協(xié)議示范文本模板
- 夢幻臥室室內(nèi)設(shè)計中的臥室布置技巧
- 浴場勞動合同范例
- 船舶拆解銷毀合同范例
- 廣州住宅合同范例
- 租擺養(yǎng)護(hù)合同范例
- MOOC 計量經(jīng)濟(jì)學(xué)-西南財經(jīng)大學(xué) 中國大學(xué)慕課答案
- DBJ61-T 104-2015 陜西省村鎮(zhèn)建筑抗震設(shè)防技術(shù)規(guī)程-(高清版)
- 公路PPP項目運營與維護(hù)具體方案
- 測控電路第7章信號細(xì)分與辨向電路
- 外研版(三起)小學(xué)英語四年級上冊教案(全冊)
- 小學(xué)生體育學(xué)習(xí)評價表
- 哈爾濱工業(yè)大學(xué)信紙模版
- 餐飲店應(yīng)聘人員面試測評表
- 踝關(guān)節(jié)扭傷.ppt
- 《合作意向確認(rèn)函》范本
- 三年級數(shù)學(xué)上冊全冊練習(xí)題
評論
0/150
提交評論