版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,則的值等于()A. B. C. D.2.一物體作變速直線運(yùn)動(dòng),其曲線如圖所示,則該物體在間的運(yùn)動(dòng)路程為()m.A.1 B. C. D.23.雙曲線的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.4.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.545.設(shè),則A. B. C. D.6.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.7.已知是虛數(shù)單位,若,則()A. B.2 C. D.108.拋物線C:y2=2px的焦點(diǎn)F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.9.某校為提高新入聘教師的教學(xué)水平,實(shí)行“老帶新”的師徒結(jié)對(duì)指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對(duì)方式共有()種.A.360 B.240 C.150 D.12010.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.11.已知函數(shù),滿足對(duì)任意的實(shí)數(shù),都有成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知定義在上的偶函數(shù),當(dāng)時(shí),,設(shè),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若函數(shù)有大于零的極值點(diǎn),則實(shí)數(shù)的取值范圍是_____14.已知實(shí)數(shù),滿足則的取值范圍是______.15.若實(shí)數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.16.已知函數(shù),若函數(shù)有6個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.18.(12分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點(diǎn)個(gè)數(shù);(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說明理由.19.(12分)已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到軸的距離多.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè),是軌跡在上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng),變化且時(shí),證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).20.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍:(2)若,記的兩個(gè)極值點(diǎn)為,,記的最大值與最小值分別為M,m,求的值.21.(12分)設(shè),函數(shù).(1)當(dāng)時(shí),求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.22.(10分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點(diǎn)為重心,與相交于點(diǎn).(1)求證:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)2、C【解析】
由圖像用分段函數(shù)表示,該物體在間的運(yùn)動(dòng)路程可用定積分表示,計(jì)算即得解【詳解】由題中圖像可得,由變速直線運(yùn)動(dòng)的路程公式,可得.所以物體在間的運(yùn)動(dòng)路程是.故選:C【點(diǎn)睛】本題考查了定積分的實(shí)際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡(jiǎn)單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.4、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.5、C【解析】分析:利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡(jiǎn)復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點(diǎn)睛:復(fù)數(shù)是高考中的必考知識(shí),主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運(yùn)算.要注意對(duì)實(shí)部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運(yùn)算主要考查除法運(yùn)算,通過分母實(shí)數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運(yùn)算時(shí)特別要注意多項(xiàng)式相乘后的化簡(jiǎn),防止簡(jiǎn)單問題出錯(cuò),造成不必要的失分.6、A【解析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿足題意;時(shí),顯然??=??(??)與??=4|??|沒有交點(diǎn),故不滿足題意;時(shí),顯然??=??(??)與??=4|??|也沒有交點(diǎn),故不滿足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.7、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)計(jì)算即可.【詳解】因?yàn)椋?,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.8、A【解析】
先由題和拋物線的性質(zhì)求得點(diǎn)P的坐標(biāo)和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點(diǎn)F1,0,準(zhǔn)線與x軸交點(diǎn)F'(-1,0),雙曲線半焦距c=1,設(shè)點(diǎn)Q(-1,y)ΔFPQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,即PF所以PQ⊥拋物線的準(zhǔn)線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點(diǎn)睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.9、C【解析】
可分成兩類,一類是3個(gè)新教師與一個(gè)老教師結(jié)對(duì),其他一新一老結(jié)對(duì),第二類兩個(gè)老教師各帶兩個(gè)新教師,一個(gè)老教師帶一個(gè)新教師,分別計(jì)算后相加即可.【詳解】分成兩類,一類是3個(gè)新教師與同一個(gè)老教師結(jié)對(duì),有種結(jié)對(duì)結(jié)對(duì)方式,第二類兩個(gè)老教師各帶兩個(gè)新教師,有.∴共有結(jié)對(duì)方式60+90=150種.故選:C.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對(duì)這個(gè)事情,是先分類還是先分步,確定方法后再計(jì)數(shù).本題中有一個(gè)平均分組問題.計(jì)數(shù)時(shí)容易出錯(cuò).兩組中每組中人數(shù)都是2,因此方法數(shù)為.10、D【解析】
直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.11、B【解析】
由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實(shí)數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實(shí)數(shù)的取值范圍是.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時(shí)還要考慮分段點(diǎn)處函數(shù)值的大小關(guān)系,考查運(yùn)算求解能力,屬于中等題.12、B【解析】
根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時(shí),,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時(shí)的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時(shí),,則,令則,當(dāng)時(shí),,則在時(shí)單調(diào)遞增,因?yàn)?,所以,即,則在時(shí)單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點(diǎn)睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求導(dǎo)數(shù),求解導(dǎo)數(shù)為零的根,結(jié)合根的分布求解.【詳解】因?yàn)?,所以,令得,因?yàn)楹瘮?shù)有大于0的極值點(diǎn),所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)問題,極值點(diǎn)為導(dǎo)數(shù)的變號(hào)零點(diǎn),側(cè)重考查轉(zhuǎn)化化歸思想.14、【解析】
根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個(gè)位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個(gè)交點(diǎn)分別為,所以的取值范圍為.故答案為:【點(diǎn)睛】本題考查了非線性約束條件下線性規(guī)劃的簡(jiǎn)單應(yīng)用,由數(shù)形結(jié)合法求線性目標(biāo)函數(shù)的取值范圍,屬于中檔題.15、【解析】
畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過點(diǎn)時(shí),取得最大值7;過點(diǎn)時(shí),取得最小值2,所以.【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對(duì)應(yīng)的基準(zhǔn)直線;然后通過平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.16、【解析】
由題意首先研究函數(shù)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)數(shù)形結(jié)合得到關(guān)于a的不等式,求解不等式即可確定實(shí)數(shù)a的取值范圍.【詳解】當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實(shí)數(shù)滿足,當(dāng)時(shí),由對(duì)勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合復(fù)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當(dāng)時(shí),,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個(gè)零點(diǎn),即方程有6個(gè)根,也就是有6個(gè)根,即與有6個(gè)不同交點(diǎn),注意到函數(shù)關(guān)于直線對(duì)稱,則函數(shù)關(guān)于直線對(duì)稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實(shí)數(shù)的取值范圍是.故答案為.【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,復(fù)合函數(shù)的單調(diào)性,數(shù)形結(jié)合的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值為;極小值為;(2)見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域?yàn)?,所以當(dāng)時(shí),;當(dāng)時(shí),,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因?yàn)?所以,又,則,因?yàn)?且在上單調(diào)遞減,所以,故.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.18、(1)個(gè);(1)存在,.【解析】試題分析:(1)設(shè),對(duì)其求導(dǎo),及最小值,從而得到的解析式,進(jìn)一步求值域即可;(1)分別對(duì)和兩種情況進(jìn)行討論,得到的解析式,進(jìn)一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍.試題解析:(1)設(shè),.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設(shè),結(jié)合與在上圖象可知,這兩個(gè)函數(shù)的圖象在上有兩個(gè)交點(diǎn),即在上零點(diǎn)的個(gè)數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設(shè)存在實(shí)數(shù),使得對(duì)恒成立,則,對(duì)恒成立,即,對(duì)恒成立,................................6分①設(shè),令,得遞增;令,得遞減,∴,當(dāng)即時(shí),,∴,∵,∴4.故當(dāng)時(shí),對(duì)恒成立,.......................8分當(dāng)即時(shí),在上遞減,∴.∵,∴,故當(dāng)時(shí),對(duì)恒成立............................10分②若對(duì)恒成立,則,∴...........11分由①及②得,.故存在實(shí)數(shù),使得對(duì)恒成立,且的取值范圍為................................................11分考點(diǎn):導(dǎo)數(shù)應(yīng)用.【思路點(diǎn)睛】本題考查了函數(shù)恒成立問題;利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,進(jìn)一步求最值;屬于難題.本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個(gè)數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.19、(1)或;(2)證明見解析,定點(diǎn)【解析】
(1)設(shè),由題意可知,對(duì)的正負(fù)分情況討論,從而求得動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)其方程為,與拋物線方程聯(lián)立,利用韋達(dá)定理得到,所以,所以直線的方程可表示為,即,所以直線恒過定點(diǎn).【詳解】(1)設(shè),動(dòng)點(diǎn)到定點(diǎn)的距離比到軸的距離多,,時(shí),解得,時(shí),解得.動(dòng)點(diǎn)的軌跡的方程為或(2)證明:如圖,設(shè),,由題意得(否則)且,所以直線的斜率存在,設(shè)其方程為,將與聯(lián)立消去,得,由韋達(dá)定理知,,①顯然,,,,將①式代入上式整理化簡(jiǎn)可得:,所以,此時(shí),直線的方程可表示為,即,所以直線恒過定點(diǎn).【點(diǎn)睛】本題主要考查了動(dòng)點(diǎn)軌跡,考查了直線與拋物線的綜合,是中檔題.20、(1);(2)【解析】
(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對(duì)恒成立求解(2)由(1)知,是的兩個(gè)根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域?yàn)椋?因?yàn)閱握{(diào),所以對(duì)恒成立,所以,恒成立,因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以;(2)由(1)知,是的兩個(gè)根.從而,,不妨設(shè),則.因?yàn)?,所以t為關(guān)于a的減函數(shù),所以..令,則.因?yàn)楫?dāng)時(shí),在上為減函數(shù).所以當(dāng)時(shí),.從而,所以在上為減函數(shù).所以當(dāng)時(shí),.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.21、(1)極大值是,無極小值;(2)【解析】
(1)當(dāng)時(shí),可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點(diǎn),從而可得原函數(shù)的極值點(diǎn)及極大值;(2)表示出,并求得,由題意,得方程有兩個(gè)不同的實(shí)根,,從而可得△及,由,得.則可化為對(duì)任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年麗江市國企招聘考試基礎(chǔ)題庫
- 吉林省-《生物化學(xué)》電子教案-細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)(人衛(wèi)版)
- 寒假安全教育一封信
- 二零二五年度高速公路服務(wù)區(qū)臨時(shí)車位租賃協(xié)議3篇
- 廣告制作常用材料教學(xué)文案
- 老年公寓入住長(zhǎng)者健康狀況評(píng)估表-養(yǎng)老院入住老年人健康狀況評(píng)估表-健康評(píng)估表格
- 2024年阜陽市人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 2024年河北工業(yè)職業(yè)技術(shù)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2024年長(zhǎng)汀縣城關(guān)醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 2024年江西工業(yè)貿(mào)易職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫含答案解析
- 2025年云南省大理州事業(yè)單位招聘339人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024-2025學(xué)年度第一學(xué)期三年級(jí)數(shù)學(xué)寒假作業(yè) 有答案
- 大型起重機(jī)械現(xiàn)場(chǎng)管理手冊(cè)
- 2024年貴州省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 江蘇省南京市聯(lián)合體2024-2025學(xué)年九年級(jí)上學(xué)期期中學(xué)情分析化學(xué)試卷(無答案)
- 二位數(shù)乘二位數(shù)600道
- 病例討論-病毒性肝炎
- 動(dòng)環(huán)監(jiān)控系統(tǒng)介紹文檔
- 獸藥經(jīng)營管理制度
- 第一單元 史前時(shí)期 原始社會(huì)與中華文明的起源 單元檢測(cè)試題 2024-2025學(xué)年統(tǒng)編版七年級(jí)歷史上冊(cè)
- 計(jì)算機(jī)網(wǎng)絡(luò)基礎(chǔ)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評(píng)論
0/150
提交評(píng)論