版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.方程x2﹣4x+5=0根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根2.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設(shè)∠CAB=α,那么拉線BC的長度為()A. B. C. D.3.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個數(shù),那么,這個幾何體的左視圖是()A. B. C. D.4.反比例函數(shù)y=1-6txA.t<16B.t>16C.t≤15.已知2是關(guān)于x的方程x2-2mx+3m=0的一個根,并且這個方程的兩個根恰好是等腰三角形ABC的兩條邊長,則三角形ABC的周長為()A.10 B.14 C.10或14 D.8或106.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°7.如圖,甲從A點出發(fā)向北偏東70°方向走到點B,乙從點A出發(fā)向南偏西15°方向走到點C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°8.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據(jù)用科學記數(shù)法表示為()A. B. C. D..9.將一圓形紙片對折后再對折,得到下圖,然后沿著圖中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形是()A. B. C. D.10.商場將某種商品按原價的8折出售,仍可獲利20元.已知這種商品的進價為140元,那么這種商品的原價是()A.160元B.180元C.200元D.220元11.正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為()A.30° B.60° C.120° D.180°12.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.24二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在正方形ABCD中,等邊三角形AEF的頂點E,F(xiàn)分別在邊BC和CD上,則∠AEB=__________.14.若一個扇形的圓心角為60°,面積為6π,則這個扇形的半徑為__________.15.已知實數(shù)m,n滿足,,且,則=.16.如圖,“人字梯”放在水平的地面上,當梯子的一邊與地面所夾的銳角為時,兩梯角之間的距離BC的長為周日亮亮幫助媽媽整理換季衣服,先使為,后又調(diào)整為,則梯子頂端離地面的高度AD下降了______結(jié)果保留根號.17.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.18.一個三角形的兩邊長分別為3和6,第三邊長是方程x2-10x+21=0的根,則三角形的周長為______________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)商場某種商品平均每天可銷售30件,每件盈利50元.為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.設(shè)每件商品降價x元.據(jù)此規(guī)律,請回答:(1)商場日銷售量增加▲件,每件商品盈利▲元(用含x的代數(shù)式表示);(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?20.(6分)為提高城市清雪能力,某區(qū)增加了機械清雪設(shè)備,現(xiàn)在平均每天比原來多清雪300立方米,現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同,求現(xiàn)在平均每天清雪量.21.(6分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.22.(8分)一天,小華和小夏玩擲骰子游戲,他們約定:他們用同一枚質(zhì)地均勻的骰子各擲一次,如果兩次擲的骰子的點數(shù)相同則小華獲勝:如果兩次擲的骰子的點數(shù)的和是6則小夏獲勝.(1)請您列表或畫樹狀圖列舉出所有可能出現(xiàn)的結(jié)果;(2)請你判斷這個游戲?qū)λ麄兪欠窆讲⒄f明理由.23.(8分)學習了正多邊形之后,小馬同學發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.24.(10分)關(guān)于x的一元二次方程ax2+bx+1=1.(1)當b=a+2時,利用根的判別式判斷方程根的情況;(2)若方程有兩個相等的實數(shù)根,寫出一組滿足條件的a,b的值,并求此時方程的根.25.(10分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.判斷AF與⊙O的位置關(guān)系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.26.(12分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;27.(12分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒有實數(shù)根.2、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關(guān)鍵.3、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.4、B【解析】
將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),根據(jù)根的判別式以及根與系數(shù)的關(guān)系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關(guān)鍵是利用兩個函數(shù)的解析式構(gòu)成方程,再利用一元二次方程的根與系數(shù)的關(guān)系求解.5、B【解析】試題分析:∵2是關(guān)于x的方程x2﹣2mx+3m=0的一個根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當1是腰時,2是底邊,此時周長=1+1+2=2;②當1是底邊時,2是腰,2+2<1,不能構(gòu)成三角形.所以它的周長是2.考點:解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關(guān)系;等腰三角形的性質(zhì).6、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關(guān)鍵.7、C【解析】
首先求得AB與正東方向的夾角的度數(shù),即可求解.【詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【點睛】本題考查了方向角,正確理解方向角的定義是關(guān)鍵.8、C【解析】
用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.
故選C.【點睛】此題主要考查了用科學記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵.9、C【解析】
嚴格按照圖中的方法親自動手操作一下,即可很直觀地呈現(xiàn)出來.【詳解】根據(jù)題意知,剪去的紙片一定是一個四邊形,且對角線互相垂直.故選C.【點睛】本題主要考查學生的動手能力及空間想象能力.對于此類問題,學生只要親自動手操作,答案就會很直觀地呈現(xiàn).10、C【解析】
利用打折是在標價的基礎(chǔ)之上,利潤是在進價的基礎(chǔ)上,進而得出等式求出即可.【詳解】解:設(shè)原價為x元,根據(jù)題意可得:80%x=140+20,解得:x=1.所以該商品的原價為1元;故選:C.【點睛】此題主要考查了一元一次方程的應用,根據(jù)題意列出方程是解決問題的關(guān)鍵.11、C【解析】
求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉(zhuǎn)一定角度后,與自身重合,旋轉(zhuǎn)角至少為120°,故選C.【點睛】本題考查旋轉(zhuǎn)對稱圖形的概念:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角,掌握正多邊形的中心角的求解是解題的關(guān)鍵12、D【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數(shù)的混合運算,解答本題的關(guān)鍵是明確有理數(shù)的混合運算的計算方法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、75【解析】因為△AEF是等邊三角形,所以∠EAF=60°,AE=AF,因為四邊形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.14、6【解析】設(shè)這個扇形的半徑為,根據(jù)題意可得:,解得:.故答案為.15、.【解析】試題分析:由時,得到m,n是方程的兩個不等的根,根據(jù)根與系數(shù)的關(guān)系進行求解.試題解析:∵時,則m,n是方程3x2﹣6x﹣5=0的兩個不相等的根,∴,.∴原式===,故答案為.考點:根與系數(shù)的關(guān)系.16、【解析】
根據(jù)題意畫出圖形,進而利用銳角三角函數(shù)關(guān)系得出答案.【詳解】解:如圖1所示:
過點A作于點D,
由題意可得:,
則是等邊三角形,
故BC,
則,
如圖2所示:
過點A作于點E,
由題意可得:,
則是等腰直角三角形,,
則,
故梯子頂端離地面的高度AD下降了
故答案為:.【點睛】此題主要考查了解直角三角形的應用,正確畫出圖形利用銳角三角三角函數(shù)關(guān)系分析是解題關(guān)鍵.17、【解析】
一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.【點睛】本題主要考查概率的求法與運用,解決本題的關(guān)鍵是要熟練掌握概率的定義和求概率的公式.18、2【解析】分析:首先求出方程的根,再根據(jù)三角形三邊關(guān)系定理,確定第三邊的長,進而求其周長.詳解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三邊的邊長<9,∴第三邊的邊長為1.∴這個三角形的周長是3+6+1=2.故答案為2.點睛:本題考查了解一元二次方程和三角形的三邊關(guān)系.已知三角形的兩邊,則第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)2x50-x(2)每件商品降價20元,商場日盈利可達2100元.【解析】
(1)2x50-x.(2)解:由題意,得(30+2x)(50-x)=2100解之得x1=15,x2=20.∵該商場為盡快減少庫存,降價越多越吸引顧客.∴x=20.答:每件商品降價20元,商場日盈利可達2100元.20、現(xiàn)在平均每天清雪量為1立方米.【解析】分析:設(shè)現(xiàn)在平均每天清雪量為x立方米,根據(jù)等量關(guān)系“現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同”列分式方程求解.詳解:設(shè)現(xiàn)在平均每天清雪量為x立方米,由題意,得解得x=1.經(jīng)檢驗x=1是原方程的解,并符合題意.答:現(xiàn)在平均每天清雪量為1立方米.點睛:此題主要考查了分式方程的應用,關(guān)鍵是確定問題的等量關(guān)系,注意解分式方程的時候要進行檢驗.21、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】
(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點睛】本題考查了全等三角形的判定與性質(zhì)的應用,作出輔助線,證明△ACB≌△BFA'是解決問題的關(guān)鍵.22、(1)36(2)不公平【解析】
(1)根據(jù)題意列表即可;(2)根據(jù)根據(jù)表格可以求得得分情況,比較其大小,即可得出結(jié)論.【詳解】(1)列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36種等可能的結(jié)果,(2)這個游戲?qū)λ麄儾还?,理由:由上表可知,所有可能的結(jié)果有36種,并且它們出現(xiàn)的可能性相等,而P(兩次擲的骰子的點數(shù)相同)P(兩次擲的骰子的點數(shù)的和是6)=∴不公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.23、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】
(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點睛】本題主要考查多邊形的綜合題,主要涉及的知識點:全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等量代換、三角形的面積等,牢記并熟練運用這些知識點是解此類綜合題的關(guān)鍵。24、(2)方程有兩個不相等的實數(shù)根;(2)b=-2,a=2時,x2=x2=﹣2.【解析】
分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數(shù)根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數(shù)根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.25、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=9
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 具體項目合作協(xié)議書(2篇)
- 《級安全教育內(nèi)容》課件
- 2024年新科版八年級物理上冊階段測試試卷
- 人力資源工藝文件維護
- 老年人交通補助政策
- 2024年昆明市五華區(qū)人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2025年粵教滬科版九年級語文上冊月考試卷
- 2024年滬科版五年級語文下冊階段測試試卷
- 鉆井工程合同填寫模板
- 建筑工程公司文員勞動合同模板
- 廣西欽州市浦北縣2023-2024學年七年級上學期期末語文試題
- 住院醫(yī)師述職報告
- 2024年度醫(yī)院燒傷科接診統(tǒng)計報告課件
- 社區(qū)普通話培訓課件
- 動態(tài)負載均衡服務器集群
- 江蘇省無錫市錫山區(qū)2023-2024學年二年級上學期期末數(shù)學試卷
- 衛(wèi)生化學期末考試習題2
- 瓣周漏護理查房
- 歷代反腐完整
- 《現(xiàn)代控制理論》(劉豹-唐萬生)
- 廣東省佛山市南海區(qū)三水區(qū)2022-2023學年七年級上學期期末歷史試題(無答案)
評論
0/150
提交評論