版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或2.舌尖上的浪費讓人觸目驚心,據統(tǒng)計中國每年浪費的食物總量折合糧食約499.5億千克,這個數(shù)用科學記數(shù)法應表示為()A.4.995×1011 B.49.95×1010C.0.4995×1011 D.4.995×10103.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4.如果代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥35.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.6.正方形ABCD在直角坐標系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉180°后,C點的坐標是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)7.已知關于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣38.據統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學記數(shù)法表示為()A. B. C. D.9.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為()A. B. C. D.10.若關于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.同一個圓的內接正方形和正三角形的邊心距的比為_____.12.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數(shù)的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.13.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號)14.如圖,圓柱形容器高為18cm,底面周長為24cm,在杯內壁離杯底4cm的點B處有乙滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿2cm與蜂蜜相對的點A處,則螞蟻從外幣A處到達內壁B處的最短距離為_______.15.因式分解:3x2-6xy+3y2=______.16.有一個計算程序,每次運算都是把一個數(shù)先乘以2,再除以它與1的和,多次重復進行這種運算的過程如下:則,y2=_____,第n次的運算結果yn=_____.(用含字母x和n的代數(shù)式表示).三、解答題(共8題,共72分)17.(8分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據繪制成如下兩幅不完整的統(tǒng)計圖.請根據以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?18.(8分)(1)計算:;(2)化簡:.19.(8分)如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點O、B、C、A、P在同一平面內,求山坡的坡度.(參考數(shù)據sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)20.(8分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結.(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯(lián)結CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.21.(8分)解方程:xx+1+222.(10分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.23.(12分)淘寶網舉辦“雙十一”購物活動許多商家都會利用這個契機進行打折讓利的促銷活動.甲網店銷售的A商品的成本為30元/件,網上標價為80元/件.“雙十一”購物活動當天,甲網店連續(xù)兩次降價銷售A商品吸引顧客,問該店平均每次降價率為多少時,才能使A商品的售價為39.2元/件?據媒體爆料,有一些淘寶商家在“雙十一”購物活動當天先提高商品的網上標價后再推出促銷活動,存在欺詐行為.“雙十一”活動之前,乙網店銷售A商品的成本、網上標價與甲網店一致,一周可售出1000件A商品.在“雙十一”購物活動當天,乙網店先將A商品的網上標價提高a%,再推出五折促銷活動,吸引了大量顧客,乙網店在“雙十一”購物活動當天賣出的A商品數(shù)量相比原來一周增加了2a%,“雙十一”活動當天乙網店的利潤達到了3萬元,求乙網店在“雙十一”購物活動這天的網上標價.24.已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學興趣小組的同學在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結果精確到1米).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據=5,=7,得,因為,則,則=5-7=-2或-5-7=-12.故選D.2、D【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是非負數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將499.5億用科學記數(shù)法表示為:4.995×1.
故選D.【點睛】此題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.3、C【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.4、C【解析】
根據二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關知識是解題的關鍵.5、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數(shù)字時,要一次能打開的概率是.故選A.6、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉180°后,C點的對應點與C一定關于A對稱,A是對稱點連線的中點,據此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉180°后C的對應點設是C′,則AC′=AC=2,則OC′=3,故C′的坐標是(3,0).故選B.考點:坐標與圖形變化-旋轉.7、B【解析】
把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.8、D【解析】
科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6
590
000=6.59×1.故選:D.【點睛】本題考查學生對科學記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.9、B【解析】
連接BF,由折疊可知AE垂直平分BF,根據勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點睛】本題考查的是翻折變換的性質、矩形的性質及勾股定理的應用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.10、B【解析】
將k看做已知數(shù)求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數(shù)的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
先畫出同一個圓的內接正方形和內接正三角形,設⊙O的半徑為R,求出正方形的邊心距和正三角形的邊心距,再求出比值即可.【詳解】設⊙O的半徑為r,⊙O的內接正方形ABCD,如圖,過O作OQ⊥BC于Q,連接OB、OC,即OQ為正方形ABCD的邊心距,∵四邊形BACD是正方形,⊙O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;設⊙O的內接正△EFG,如圖,過O作OH⊥FG于H,連接OG,即OH為正△EFG的邊心距,∵正△EFG是⊙O的外接圓,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案為:1.【點睛】本題考查了正多邊形與圓、解直角三角形,等邊三角形的性質、正方形的性質等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.12、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據反比例函數(shù)系數(shù)k的幾何意義,可知k=6,∴反比例函數(shù)的解析式為;設正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數(shù)系數(shù)k的幾何意義.13、①②④【解析】
由正方形的性質和相似三角形的判定與性質,即可得出結論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會相似;故③錯誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.【點睛】本題考查的正方形的性質,等邊三角形的性質以及相似三角形的判定和性質,解答此題的關鍵是熟練掌握性質和定理.14、20cm.【解析】
將杯子側面展開,建立A關于EF的對稱點A′,根據兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如答圖,將杯子側面展開,作A關于EF的對稱點A′,連接A′B,則A′B即為最短距離.根據勾股定理,得(cm).故答案為:20cm.【點睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質和勾股定理進行計算是解題的關鍵.同時也考查了同學們的創(chuàng)造性思維能力.15、3(x﹣y)1【解析】試題分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考點:提公因式法與公式法的綜合運用16、【解析】
根據題目中的程序可以分別計算出y2和yn,從而可以解答本題.【詳解】∵y1=,∴y2===,y3=,……yn=.故答案為:.【點睛】本題考查了分式的混合運算,解答本題的關鍵是明確題意,用代數(shù)式表示出相應的y2和yn.三、解答題(共8題,共72分)17、(1)見解析;(2)A;(3)800人.【解析】
(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據眾數(shù)的定義即可求解;(3)利用總人數(shù)2000乘以對應的百分比即可求解.【詳解】解:(1)∵被調查的學生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有2000×(25%+10%+5%)=800人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據;扇形統(tǒng)計圖直接反映部分占總體的百分比大小.18、(1)4+;(2).【解析】
(1)根據冪的乘方、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值可以解答本題;(3)根據分式的減法和除法可以解答本題.【詳解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【點睛】本題考查分式的混合運算、實數(shù)的運算、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值,解答本題的關鍵是明確它們各自的計算方法.19、【解析】
過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt△CBD,得出CD=PD?tan37°;再根據CD﹣BD=BC,列出方程,求出PD=2,進而求出PE=4,AE=5,然后在△APE中利用三角函數(shù)的定義即可求解.【詳解】解:如圖,過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD?tan∠BPD=PD?tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD?tan∠CPD=PD?tan37°.∵CD﹣BD=BC,∴PD?tan37°﹣PD?tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD?tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴.20、(2);(2)詳見解析;(2)當是以CD為腰的等腰三角形時,CD的長為2或.【解析】
(2)先求出OCOB=2,設OD=x,得出CD=AD=OA﹣OD=2﹣x,根據勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結論;(2)先判斷出,進而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結論;(3)分兩種情況:①當CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當CD=DE時,判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進而得出∠DEA=∠OEA,即:點D和點O重合,即可得出結論.【詳解】(2)∵C是半徑OB中點,∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當CD=CE時.∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當CD=DE時.∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點D和點O重合,此時,點C和點B重合,∴CD=2.綜上所述:當△DCE是以CD為腰的等腰三角形時,CD的長為2或.【點睛】本題是圓的綜合題,主要考查了勾股定理,線段垂直平分線的性質,菱形的判定和性質,銳角三角函數(shù),作出輔助線是解答本題的關鍵.21、-3【解析】試題分析:解得x=-3經檢驗:x=-3是原方程的根.∴原方程的根是x=-3考點:解一元一次方程點評:在中考中比較常見,在各種題型中均有出現(xiàn),一般難度不大,要熟練掌握.22、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質,即可判定△FAE≌△CDE,即可得到CD=FA,再根據CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據E是AD的中點,可得AD=2CD,依據AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質以及平行四邊形的判定與性質,要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或對角的位置上,通過證明四邊形是平行四邊形達到上述目的.23、(1)平均每次降價率為30%,才能使這件A商品的售價為39.2元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DBJ51-T 190-2022 四川省裝配式支吊架抗震技術標準
- 2024年大學創(chuàng)新創(chuàng)業(yè)工作總結
- 《我的時間管理分享》課件
- 《村鎮(zhèn)銀行介紹》課件
- 新媒體春分營銷策略
- 酒店前臺話務員工作總結
- 企業(yè)生涯規(guī)劃圖譜
- 2023-2024年項目部安全培訓考試題及答案往年題考
- 2023年-2024年項目部管理人員安全教育培訓試題及答案(各地真題)
- 化工生產實習報告合集十篇
- 【9道期末】安徽省宣城市2023-2024學年九年級上學期期末道德與法治試題(含解析)
- 《工程造價專業(yè)應用型本科畢業(yè)設計指導標準》
- 倉庫主管2025年終總結及2025工作計劃
- 2024年01月11396藥事管理與法規(guī)(本)期末試題答案
- 股權投資協(xié)議的風險控制
- 山西省晉中市2023-2024學年高一上學期期末考試 物理 含解析
- 裝卸工安全培訓課件
- 中成藥學完整版本
- 安全與急救學習通超星期末考試答案章節(jié)答案2024年
- 2024-2025學年度廣東省春季高考英語模擬試卷(解析版) - 副本
- 2024電力安全工器具及小型施工機具預防性試驗規(guī)程
評論
0/150
提交評論