2021-2022學(xué)年北京大學(xué)附中高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年北京大學(xué)附中高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年北京大學(xué)附中高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年北京大學(xué)附中高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年北京大學(xué)附中高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A.2 B. C. D.32.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.63.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位4.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件5.設(shè)過定點的直線與橢圓:交于不同的兩點,,若原點在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.6.已知滿足,則的取值范圍為()A. B. C. D.7.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實驗:通過計算機(jī)模擬在長為10,寬為6的長方形奧運會旗內(nèi)隨機(jī)取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.8.已知,,,,.若實數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值9.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達(dá)到峰值10.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.11.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第三象限C.的共軛復(fù)數(shù) D.12.的展開式中含的項的系數(shù)為()A. B.60 C.70 D.80二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于的不等式對于任意恒成立,則實數(shù)的取值范圍為_________.14.已知函數(shù),若的最小值為,則實數(shù)的取值范圍是_________15.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為________.16.拋物線的焦點坐標(biāo)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)求的極坐標(biāo)方程和的直角坐標(biāo)方程;(Ⅱ)設(shè)分別交于兩點(與原點不重合),求的最小值.18.(12分)在銳角三角形中,角的對邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.19.(12分)已知函數(shù),其中,.(1)當(dāng)時,求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r,求在上的值域.20.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標(biāo)準(zhǔn)方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.21.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項公式;(2)若,求數(shù)列的前n項和.22.(10分)誠信是立身之本,道德之基,我校學(xué)生會創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進(jìn)誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學(xué)生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數(shù)值的求法,考查對數(shù)的運算和對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時注意函數(shù)性質(zhì)的合理應(yīng)用.2.A【解析】

根據(jù)定義,表示出數(shù)列的通項并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設(shè)第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當(dāng)?shù)闹悼梢詾?;即?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.3.A【解析】

運用輔助角公式將兩個函數(shù)公式進(jìn)行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數(shù)和目標(biāo)函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).4.A【解析】

根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題5.D【解析】

設(shè)直線:,,,由原點在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設(shè)直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點睛】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯(lián)立方程組,通過韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計算能力,屬于中檔題.6.C【解析】

設(shè),則的幾何意義為點到點的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點到點的斜率,作出不等式組對應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點的直線平行于軸時,此時成立;取所有負(fù)值都成立;當(dāng)過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問題,解題時作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對于直線斜率要注意斜率不存在的直線是否存在.7.B【解析】

根據(jù)比例關(guān)系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設(shè)會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.8.B【解析】

判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標(biāo)函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.9.D【解析】

根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達(dá)到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.10.D【解析】

本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標(biāo),然后將點縱坐標(biāo)帶入圓的方程即可得出點坐標(biāo),最后將點坐標(biāo)帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標(biāo)為,將點縱坐標(biāo)帶入圓的方程中可得,解得,,將點坐標(biāo)帶入雙曲線中可得,化簡得,,,,故選D。【點睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。11.D【解析】

利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復(fù)數(shù)的四則運算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.12.B【解析】

展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,所以的展開式中含的項的系數(shù)為.故選:B【點睛】本題考查了二項式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因為,,對任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時等號成立,又因為在內(nèi)有解,,則,即:,所以實數(shù)的取值范圍:.故答案為:.【點睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計算能力.14.【解析】

,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時,等號成立.當(dāng)時,為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.15.【解析】

直接計算得到答案,根據(jù)題意得到,,解得答案.【詳解】,故,當(dāng)時,,故,解得.故答案為:;.【點睛】本題考查了三角函數(shù)的周期和單調(diào)性,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.16.【解析】

變換得到,計算焦點得到答案.【詳解】拋物線的標(biāo)準(zhǔn)方程為,,所以焦點坐標(biāo)為.故答案為:【點睛】本題考查了拋物線的焦點坐標(biāo),屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,的直角坐標(biāo)方程為;(Ⅱ)2.【解析】

(Ⅰ)由定義可直接寫出直線的極坐標(biāo)方程,對曲線同乘可得:,轉(zhuǎn)化成直角坐標(biāo)為;(Ⅱ)分別聯(lián)立兩直線和曲線的方程,由得,由得,則,結(jié)合三角函數(shù)即可求解;【詳解】(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為由曲線的極坐標(biāo)方程得,所以的直角坐標(biāo)方程為.(Ⅱ)與的極坐標(biāo)方程聯(lián)立得所以.與的極坐標(biāo)方程聯(lián)立得所以.所以.所以當(dāng)時,取最小值2.【點睛】本題考查參數(shù)方程與極坐標(biāo)方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,極坐標(biāo)中的幾何意義,屬于中檔題18.(1);(2).【解析】

(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式與等比數(shù)列的性質(zhì)可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關(guān)系與正弦定理可求得,再結(jié)合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開化簡得,因為,故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負(fù)的舍去),可得銳角;由可得,由為銳角,解得,因為為銳角,故可得,由正弦定理可得,又的面積為可得,解得.【點睛】本題主要考查了等差等比中項的運用以及正切的和差角公式以及同角三角函數(shù)關(guān)系等.同時也考查了正弦定理與面積公式在解三角形中的運用,屬于中檔題.19.(1)(2)【解析】

(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當(dāng)時,.當(dāng)時,(最大值)當(dāng)時,在是增函數(shù),在是減函數(shù).的值域是.【點睛】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識,考查了運算求解能力,屬于中檔題.20.(1)(2)證明見解析【解析】

(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因為,所以可設(shè)直線CD的方程為,將直線代入曲線的方程,利用韋達(dá)定理得到的關(guān)系,再代入斜率公式可證得為定值.【詳解】(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,,故橢圓E的標(biāo)準(zhǔn)方程為.(2)根據(jù)題意可知,,因為,所以可設(shè)直線CD的方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論