第三章 經(jīng)典假設(shè)條件不滿足時(shí)的問(wèn)題與對(duì)策_(dá)第1頁(yè)
第三章 經(jīng)典假設(shè)條件不滿足時(shí)的問(wèn)題與對(duì)策_(dá)第2頁(yè)
第三章 經(jīng)典假設(shè)條件不滿足時(shí)的問(wèn)題與對(duì)策_(dá)第3頁(yè)
第三章 經(jīng)典假設(shè)條件不滿足時(shí)的問(wèn)題與對(duì)策_(dá)第4頁(yè)
第三章 經(jīng)典假設(shè)條件不滿足時(shí)的問(wèn)題與對(duì)策_(dá)第5頁(yè)
已閱讀5頁(yè),還剩124頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第三章經(jīng)典假設(shè)條件不滿足時(shí)的問(wèn)題及對(duì)策本章內(nèi)容第一節(jié)多重共線性第二節(jié)異方差性第三節(jié)自相關(guān)第四節(jié)隨機(jī)解釋變量OLS估計(jì)量令人滿意的性質(zhì),是根據(jù)一組假設(shè)條件而得到的。在實(shí)踐中,如果某些假設(shè)條件不能滿足,則OLS就不再是模型的最佳估計(jì)法。下面列出實(shí)踐中可能碰到的一些常見(jiàn)問(wèn)題

★多重共線性(Multicollinearity)★異方差性(Heteroscedasticity或Heteroskedasticity)★自相關(guān)(Autocorrelation)★隨機(jī)解釋變量(Stochasticexplanatoryvariables)

本章將對(duì)上述問(wèn)題作簡(jiǎn)要討論,主要介紹問(wèn)題的后果、檢測(cè)方法和解決途徑。第一節(jié)多重共線性

應(yīng)用OLS法的一個(gè)假設(shè)條件是;矩陣X的秩=K+1<N。即自變量之間不存在嚴(yán)格的線性關(guān)系,觀測(cè)值個(gè)數(shù)大于待估計(jì)的參數(shù)的個(gè)數(shù)。這兩條無(wú)論哪一條不滿足,則OLS估計(jì)值的計(jì)算無(wú)法進(jìn)行,估計(jì)過(guò)程由于數(shù)學(xué)原因而中斷,就象分母為0一樣。

這兩種情況都很罕見(jiàn)。然而,自變量之間存在近似的線性關(guān)系則是很可能的事。事實(shí)上,在經(jīng)濟(jì)變量之間,這種近似的線性關(guān)系是很常見(jiàn)的。當(dāng)某些解釋變量高度相關(guān)時(shí),盡管估計(jì)過(guò)程不會(huì)中斷,但會(huì)產(chǎn)生嚴(yán)重的估計(jì)問(wèn)題,我們稱這種現(xiàn)象為多重共線性。解釋變量間存在嚴(yán)格線性相關(guān)關(guān)系時(shí),稱為完全的多重共線性。一、定義在實(shí)踐中,若兩個(gè)或多個(gè)解釋變量高度線性相關(guān),我們就說(shuō)模型中存在多重共線性。二、后果

1.不改變參數(shù)估計(jì)量的無(wú)偏性;事實(shí)上,對(duì)于不完全多重線性,參數(shù)估計(jì)量仍為BLUE。

這是因?yàn)?,盡管解釋變量之間存在多重共線性,但并不影響擾動(dòng)項(xiàng)和解釋變量觀測(cè)值的性質(zhì),故仍有

2.但各共線變量的參數(shù)的OLS估計(jì)值方差很大,即估計(jì)值精度很低。(BLUE表明在各線性無(wú)偏估計(jì)量中方差最小,但不等于方差的值很小。)3.由于若干個(gè)X變量共變,它們各自對(duì)因變量的影響無(wú)法確定。

4.各共線變量系數(shù)估計(jì)量的t值低,使得犯第Ⅱ類(lèi)錯(cuò)誤的可能性增加。由于各共線變量的參數(shù)的OLS估計(jì)值方差大,因而系數(shù)估計(jì)量的t值低,使得我們犯第Ⅱ類(lèi)錯(cuò)誤(接受錯(cuò)誤的原假設(shè)H0:βj=0)的可能性增加,容易將本應(yīng)保留在模型中的解釋變量舍棄了。1.根據(jù)回歸結(jié)果判別判別是否存在多重共線性的最簡(jiǎn)單方法是分析回歸結(jié)果。如果發(fā)現(xiàn):

系數(shù)估計(jì)值的符號(hào)不對(duì);某些重要的解釋變量t值低,而R2不低;當(dāng)一不太重要的解釋變量被刪除后,回歸結(jié)果顯著變化。則可能存在多重共線性。其中上述第二種現(xiàn)象是多重共線性存在的典型跡象。此方法簡(jiǎn)便易行,因而是實(shí)踐中最常用的方法,缺點(diǎn)是無(wú)法確診。三、多重共線性的判別和檢驗(yàn)2.使用相關(guān)矩陣檢驗(yàn)

統(tǒng)計(jì)軟件一般提供各解釋變量?jī)蓛芍g的相關(guān)系數(shù)矩陣,如發(fā)現(xiàn)某些相關(guān)系數(shù)高(絕對(duì)值高于0.8或0.90),則表明多重共線性存在。但即使解釋變量?jī)蓛芍g的相關(guān)系數(shù)都低,也不能排除存在多重共線性的可能性。

3.通過(guò)條件指數(shù)檢驗(yàn)條件指數(shù)(Conditionindex)或條件數(shù)Conditionnumber)是X′X矩陣的最大和最小特征根之比的平方根,條件指數(shù)高,表明存在多重共線性。至于什么程度算高,也沒(méi)有一個(gè)絕對(duì)的標(biāo)準(zhǔn)。通常認(rèn)為大于10即存在多重共線性,大于30表明存在嚴(yán)重多重共線性。大多數(shù)統(tǒng)計(jì)軟件提供此檢驗(yàn)值。4.使用VIF檢驗(yàn)VIF是方差膨脹因子的英文

(VarianceInflationFactors)縮寫(xiě),這是一種比較正規(guī)的檢驗(yàn)方法。該方法通過(guò)檢查指定的解釋變量能夠被回歸方程中其它全部解釋變量所解釋的程度來(lái)檢測(cè)多重共線性。方程中每個(gè)解釋變量有一個(gè)VIF,該VIF是關(guān)于多重共線性使相應(yīng)的系數(shù)估計(jì)值的方差增大了多少的一個(gè)估計(jì)值。高VIF表明多重共線性增大了系數(shù)估計(jì)值的方差,從而產(chǎn)生一個(gè)減小了的t值。VIF檢驗(yàn)的具體步驟如下:

設(shè)原方程為:Y=0+1X1+2X2+…+kXk+u我們需要計(jì)算K個(gè)不同的VIF,每個(gè)Xi一個(gè)。為指定Xi計(jì)算VIF涉及以下三步:

(1)Xi對(duì)原方程中其它全部解釋變量進(jìn)行OLS回歸,例如,若i

=1,則回歸下面的方程:

X1=1+2X2+3X3+…+kXk

+v(2)計(jì)算的方差膨脹因子(VIF):

其中Ri2是第一步輔助回歸的決定系數(shù)。

(3)分析多重共線性的程度VIF越高,多重共線性的影響越嚴(yán)重。由于沒(méi)有VIF臨界值表,我們只能使用經(jīng)驗(yàn)法則:若,則存在嚴(yán)重多重共線性。也有人建議用VIF>10作為存在嚴(yán)重多重共線性的標(biāo)準(zhǔn),特別在解釋變量多的情形應(yīng)當(dāng)如此。需要指出的是,所有VIF值都低,并不能排除嚴(yán)重多重共線性的存在,這與使用相關(guān)系數(shù)矩陣檢驗(yàn)的情況相似。

四、解決多重共線性的方法

思路:加入額外信息。具體方法有以下幾種:增加數(shù)據(jù)對(duì)模型施加某些約束條件刪除一個(gè)或幾個(gè)共線變量將模型適當(dāng)變形1.增加數(shù)據(jù)多重共線性實(shí)質(zhì)上是數(shù)據(jù)問(wèn)題,因此,增加數(shù)據(jù)就有可能消除或減緩多重共線性,具體方法包括增加觀測(cè)值、利用不同的數(shù)據(jù)集或采用新的樣本。例3.1需求函數(shù)Yt=β1+β2Xt+β3Pt+ut

在時(shí)間序列數(shù)據(jù)中,收入(X)和價(jià)格(P)往往是高度相關(guān)的,用時(shí)間序列數(shù)據(jù)估計(jì)往往會(huì)產(chǎn)生多重共線性。然而,在橫截面數(shù)據(jù)中,則不存在這個(gè)問(wèn)題,因?yàn)槟硞€(gè)特定時(shí)點(diǎn)P為常數(shù)。如果取一橫截面樣本(如從5000個(gè)家庭取得的數(shù)據(jù)),則可用來(lái)估計(jì)

Yi=α1+α2Xi+ui

然后將得到的估計(jì)值作為一個(gè)約束條件(β2=

)施加于時(shí)間序列數(shù)據(jù)的回歸計(jì)算中,即估計(jì)

Yt

-Xt

=β1+β3Pt+ut

,得到,。2.對(duì)模型施加某些約束條件在存在多重共線性的模型中,依據(jù)經(jīng)濟(jì)理論施加某些約束條件,將減小系數(shù)估計(jì)量的方差,如在Cobb—Douglas生產(chǎn)函數(shù)中加進(jìn)規(guī)模效益不變的約束,可解決資本和勞動(dòng)的高度相關(guān)而引起的多重共線性問(wèn)題。

3.刪除一個(gè)或幾個(gè)共線性變量這樣做,實(shí)際上就是利用給定數(shù)據(jù)估計(jì)較少的參數(shù),從而降低對(duì)觀測(cè)信息的需求,以解決多重共線性問(wèn)題。刪除哪些變量,可根據(jù)假設(shè)檢驗(yàn)的結(jié)果確定。應(yīng)注意的是,這種做法可能會(huì)使得到的系數(shù)估計(jì)量產(chǎn)生偏倚,因而需要權(quán)衡利弊。4.將模型適當(dāng)變形例1.某商品的需求函數(shù)為:其中:Q=需求量,X=收入,

P=該商品的價(jià)格,P*=替代商品的價(jià)格在實(shí)際數(shù)據(jù)中,P和P*往往呈同方向變動(dòng),它們之間高度相關(guān),模型存在多重共線性。如果我們僅要求在知道兩種商品的相對(duì)價(jià)格變動(dòng)時(shí),對(duì)需求量進(jìn)行預(yù)測(cè),則可將需求函數(shù)變?yōu)椋壕涂梢越鉀Q多重共線性問(wèn)題。例2.有滯后變量的情形

Yt=β1+β2Xt+β3Xt-1+ut

一般而言,Xt和Xt–1往往高度相關(guān),將模型變換為:

Yt=β1+β2(Xt

-

Xt–1)+β3′Xt-1+ut

其中β3′=β3+β2

經(jīng)驗(yàn)表明:△Xt和Xt–1的相關(guān)程度要遠(yuǎn)遠(yuǎn)小于和Xt和Xt–1的相關(guān)程度,因而這種變換有可能消除或減緩多重共線性。五、處理多重共線性問(wèn)題的原則1.多重共線性是普遍存在的,輕微的多重共線性問(wèn)題可不采取措施。

2.嚴(yán)重的多重共線性問(wèn)題,一般可根據(jù)經(jīng)驗(yàn)或通過(guò)分析回歸結(jié)果發(fā)現(xiàn)。如影響系數(shù)的符號(hào),重要的解釋變量t值很低。要根據(jù)不同情況采取必要措施。

3.如果模型僅用于預(yù)測(cè),則只要擬合好,可不處理多重共線性問(wèn)題,存在多重共線性的模型用于預(yù)測(cè)時(shí),往往不影響預(yù)測(cè)結(jié)果。六、實(shí)例

選取全國(guó)1978-2008年的時(shí)間序列數(shù)據(jù)對(duì)我國(guó)城鎮(zhèn)就業(yè)人數(shù)建立多元線性回歸模型。影響因素有名義GDP、GDP平減指數(shù)、工業(yè)總產(chǎn)值、城鎮(zhèn)登記失業(yè)人數(shù)、時(shí)間(1978年為1,1979年為2,依此類(lèi)推)。具體數(shù)據(jù)與變量名稱見(jiàn)教材表3-5,回歸結(jié)果如下。

回歸結(jié)果顯示,模型擬合優(yōu)度非常高,為0.9968,F(xiàn)統(tǒng)計(jì)量也顯示模型具有整體顯著性。但是GDP、GDP平減指數(shù)、工業(yè)總產(chǎn)值均未能通過(guò)5%顯著性檢驗(yàn),且GDP平減指數(shù)的系數(shù)為負(fù),與理論預(yù)期不符,同時(shí)GDP與工業(yè)總產(chǎn)值的系數(shù)非常小,因此懷疑存在多重共線性問(wèn)題。為了更加清晰的進(jìn)行說(shuō)明,表3-2給出了所有變量之間的相關(guān)系數(shù)。從第1行可以看出,被解釋變量與所有解釋變量之間的關(guān)系均為正相關(guān)。此外,解釋變量間顯示出高度相關(guān),如GDP與工業(yè)總產(chǎn)值,GDP平減指數(shù)與時(shí)間T之間的相關(guān)性都大于0.95,這意味著多重共線性的存在。

下面我們對(duì)多重共線性進(jìn)行處理。將GDP與GDP平減指數(shù)合并,即將名義GDP用平減指數(shù)進(jìn)行調(diào)整,得到實(shí)際GDP作為新的解釋變量,同時(shí)去掉工業(yè)總產(chǎn)值變量。最終結(jié)果如下?;貧w模型擬合程度非常好。所有參數(shù)都具有顯著性,符號(hào)符合經(jīng)濟(jì)意義,且擬合優(yōu)度幾乎沒(méi)有下降。可以認(rèn)為原模型的多重共線性問(wèn)題已得到解決。第二節(jié)異方差性

上面我們討論了誤設(shè)定和多重共線性問(wèn)題?;仡櫸覀儜?yīng)用OLS法所需假設(shè)條件,其中大部分是有關(guān)擾動(dòng)項(xiàng)的統(tǒng)計(jì)假設(shè),它們是:(1)E(ut)=0,t=1,2,…,n.擾動(dòng)項(xiàng)均值為0(2)Cov(ui,uj)=E(uiuj)=0,i≠j.擾動(dòng)項(xiàng)相互獨(dú)立(3)Var(ut)=E(ut2)=2

,t=1,2,…,n.常數(shù)方差(4)ut

~N(0,2).正態(tài)性

對(duì)于(1),我們可論證其合理性。而第(4)條,也沒(méi)有多大問(wèn)題。大樣本即可假定擾動(dòng)項(xiàng)服從正態(tài)分布。而對(duì)于(2),(3)兩條,則無(wú)法論證其合理性。實(shí)際問(wèn)題中,這兩條不成立的情況比比皆是。下面即將討論它們不成立的情況,即異方差性和自相關(guān)的情形。一、異方差性及其后果1. 定義若Var(ut)==常數(shù)的假設(shè)不成立,即

Var(ut)=≠常數(shù),則稱擾動(dòng)項(xiàng)具有異方差性。2. 什么情況下可能發(fā)生異方差性問(wèn)題?解釋變量取值變動(dòng)幅度大時(shí),常數(shù)方差的假設(shè)往往難以成立。異方差性主要發(fā)生在橫截面數(shù)據(jù)的情況,時(shí)間序列問(wèn)題中一般不會(huì)發(fā)生,除非時(shí)間跨度過(guò)大。例3.4Yi=α+βXi+ui

其中:Y=指定規(guī)模和組成的家庭每月消費(fèi)支出

X=這樣的家庭的每月可支配收入設(shè)X的N個(gè)觀測(cè)值取自一個(gè)家庭可支配收入的橫截面樣本。某些家庭接近于勉強(qiáng)維持生存的水平,另一些家庭則有很高的收入。不難設(shè)想,低收入家庭的消費(fèi)支出不大可能離開(kāi)他們的均值E(Y)過(guò)遠(yuǎn),太高無(wú)法支持,太低則消費(fèi)將處于維持生存的水平之下。因此,低收入家庭消費(fèi)支出額的波動(dòng)應(yīng)當(dāng)較小,因而擾動(dòng)項(xiàng)具有較小的方差。而高收入家庭則沒(méi)有這種限制,其擾動(dòng)項(xiàng)可能有大得多的方差。這就意味著異方差性。

3.異方差性的后果(1)參數(shù)估計(jì)量不再具有最小方差的性質(zhì)異方差性不破壞OLS估計(jì)量的無(wú)偏性,但不再是有效的。事實(shí)上,異方差性的存在導(dǎo)致OLS估計(jì)量既不是有效的,也不具有漸近有效性。這有兩層含義。首先,小樣本性質(zhì)—BLUE的喪失意味著存在著另外的線性無(wú)偏估計(jì)量,其抽樣方差小于OLS估計(jì)量的方差。其次,漸近有效性這一大樣本性質(zhì)的喪失,意味著存在著另外的一致估計(jì)量,其抽樣分布當(dāng)樣本容量增大時(shí),向被估計(jì)的回歸參數(shù)收縮的速度要比OLS估計(jì)量快。

(2)系數(shù)的置信區(qū)間和假設(shè)檢驗(yàn)結(jié)果不可信賴更為嚴(yán)重的是,在異方差性的情況下,矩陣主對(duì)角元素不再是OLS估計(jì)量方差的無(wú)偏估計(jì)量,從而導(dǎo)致系數(shù)的置信區(qū)間和假設(shè)檢驗(yàn)結(jié)果不可信賴。在異方差性的情況下,系數(shù)估計(jì)量的方差既有可能低估,也有可能高估真實(shí)方差。在這兩種情況下,都會(huì)產(chǎn)生檢驗(yàn)結(jié)果的誤導(dǎo)。例如,被檢驗(yàn)的系數(shù)實(shí)際上不是統(tǒng)計(jì)上顯著的,而由于矩陣的主對(duì)角元素低估了OLS估計(jì)量的相應(yīng)方差,檢驗(yàn)結(jié)果卻表明其顯著。(問(wèn)題:低估方差是否是好事?)二、異方差性的檢驗(yàn)

異方差性后果的嚴(yán)重性意味著我們?cè)趯?shí)踐中必須了解是否存在異方差性。

常用的檢驗(yàn)方法有:

戈德弗爾德—匡特檢驗(yàn)法(Goldfeld

Quandttest)

格里瑟檢驗(yàn)法(Glesjertest)帕克檢驗(yàn)法(Parktest)懷特檢驗(yàn)法(White’sGeneralHeteroscedasticitytest)

布魯奇-帕根檢驗(yàn)法(Breusch-PaganTest)1.戈德弗爾德——匡特檢驗(yàn)法基本思路:假定隨Yt的數(shù)值大小變動(dòng)。檢驗(yàn)步驟:(1)將數(shù)據(jù)分為三組:小Yt值組,中Yt值組,大Yt值組(數(shù)據(jù)項(xiàng)大致相等)(2)對(duì)小Yt值組估計(jì)模型,給出

(3)對(duì)大Yt值組估計(jì)模型,給出

(4)H0:

H1:(或)

檢驗(yàn)統(tǒng)計(jì)量為F0=

~F(n3-k-1,n1-k-1)若F0>Fc,則拒絕H0,存在異方差性。

例3.5S=α+βY+u其中:S=儲(chǔ)蓄Y=收入設(shè)1951—60年,=0.016251970—79年,

=0.9725F0=0.9725/0.01625=59.9

查表得:d.f.為(8,8)時(shí),5%Fc=3.44∵F0>Fc

因而拒絕H0。結(jié)論:存在異方差性。2.懷特檢驗(yàn)法(White’sGeneralHeteroscedasticityTest)

懷特提出的檢驗(yàn)異方差性的方法在實(shí)踐中用起來(lái)很方便,下面用一個(gè)三變量線性模型扼要說(shuō)明其檢驗(yàn)步驟。設(shè)模型如下:White檢驗(yàn)步驟如下:(1)用OLS法估計(jì)(1)式,得到殘差ei

;(2)進(jìn)行如下輔助回歸即殘差平方對(duì)所有原始變量、變量平方以及變量交叉積回歸,得到R2值;(3)進(jìn)行假設(shè)檢驗(yàn)原假設(shè)H0:不存在異方差性(即方程(2)全部斜率系數(shù)均為零)

備擇假設(shè)H1:存在異方差性(即H0不成立)

懷特證明了下面的命題:在原假設(shè)H0成立的情況下,從(2)式得到的R2值與觀測(cè)值數(shù)目(n)的乘積(n×R2)服從自由度為k的2分布,自由度k為(2)式中解釋變量的個(gè)數(shù)。即

n·R2

~

2(k)

因此,懷特檢驗(yàn)的檢驗(yàn)統(tǒng)計(jì)量就是n·R2

,其抽樣分布為自由度為k的2分布。檢驗(yàn)步驟類(lèi)似于t檢驗(yàn)和F檢驗(yàn)。例3.6

根據(jù)2006年內(nèi)地31省市的數(shù)據(jù),研究文化娛樂(lè)支出Y與人均可支配收入X1和文化娛樂(lè)價(jià)格X2之間的關(guān)系,建立回歸模型,得到如下估計(jì)結(jié)果:

Y=1661.54+0.135X1-20.64X2

t:(14.44)(-1.18)由于各個(gè)省市的收入差距比較大,文化娛樂(lè)支出的差距也會(huì)比較大,因此可能存在異方差性。下面通過(guò)white檢驗(yàn)來(lái)判斷是否存在異方差性。先對(duì)該模型作OLS回歸,得到殘差;然后做如下輔助回歸:使用EViews軟件,得到輔助回歸的,因此

(3)檢驗(yàn):不存在異方差性:存在異方差性查表,在5%的顯著性水平下,自由度為5的值為11.07,因?yàn)?gt;11.07,所以拒絕原假設(shè),結(jié)論是存在異方差性。三、廣義最小二乘法1.消除異方差性的思路基本思路:變換原模型,使經(jīng)過(guò)變換后的模型具有同方差性,然后再用OLS法進(jìn)行估計(jì)。對(duì)于模型

Yt=β0+β1X1t+…+βk

Xkt+ut

(1)若擾動(dòng)項(xiàng)滿足E(ut)=0,E(uiuj)=0,i≠j,但E(ut2)=σt2≠常數(shù).

也就是說(shuō),該模型只有同方差性這一條件不滿足,則只要能將具有異方差性的擾動(dòng)項(xiàng)的方差表示成如下形式:

由于

其中為一未知常數(shù),表示一組已知數(shù)值,則用λt去除模型各項(xiàng),得變換模型:

所以變換后模型的擾動(dòng)項(xiàng)的方差為常數(shù),可以應(yīng)用OLS法進(jìn)行估計(jì),得到的參數(shù)估計(jì)量為BLUE。但這里得到的OLS估計(jì)量是變模后模型(2)的OLS估計(jì)量。對(duì)于原模型而言,它已不是OLS估計(jì)量,稱為廣義最小二乘估計(jì)量(GLS估計(jì)量)。2. 廣義最小二乘法(Generalizedleastsquares)

下面用矩陣形式的模型來(lái)推導(dǎo)出GLS估計(jì)量的一般計(jì)算公式。設(shè)GLS模型為Y=Xβ+u

(1)滿足E(u)=0,E(uu′)=2Ω,X

非隨機(jī),

X的秩=K+1<n,其中Ω為正定矩陣。

根據(jù)矩陣代數(shù)知識(shí)可知,對(duì)于任一正定矩陣Ω,存在著一個(gè)滿秩(非退化,非奇異)矩陣P,使得用P-1左乘原模型(1)(對(duì)原模型進(jìn)行變換):令Y*=P-1Y,X*=P-1X,u*=P-1u,得到

Y*=X*β+u*

(2)

下面的問(wèn)題是,模型(2)的擾動(dòng)項(xiàng)u*是否滿足OLS法的基本假設(shè)條件。我們有這表明,模型(2)中的擾動(dòng)項(xiàng)u*滿足OLS法的基本假設(shè),可直接用OLS估計(jì),估計(jì)量向量

這就是廣義最小二乘估計(jì)量(GLS估計(jì)量)的公式,該估計(jì)量是BLUE。從上述證明過(guò)程可知,我們可將GLS法應(yīng)用于Ω為任意正定矩陣的情形。如果只存在異方差性,則其中我們顯然有四、解決異方差問(wèn)題的方法1.可行廣義最小二乘法(FGLS法)

廣義最小二乘法從理論上解決了擾動(dòng)項(xiàng)存在異方差性的情況下模型的估計(jì)問(wèn)題,但在實(shí)踐中是否可行呢?從GLS估計(jì)量的公式可知,要計(jì)算GLS估計(jì)值,我們必須知道矩陣。而實(shí)際問(wèn)題中矩陣極少為已知。因此,在實(shí)踐中直接應(yīng)用GLS法基本上不可行。

但在很多情況下,我們可以根據(jù)實(shí)際問(wèn)題提供的信息估計(jì)矩陣,再應(yīng)用GLS法,這種方法稱為可行廣義最小二乘法(FeasibleGeneralizedLeastSquares,FGLS)。例如在僅存在異方差性的情況下,如果在實(shí)際問(wèn)題中,研究人員確信可以準(zhǔn)確估計(jì)異方差性的結(jié)構(gòu),如擾動(dòng)項(xiàng)方差與某個(gè)解釋變量成正比,就可以采用FGLS法。由于FGLS法的核心是估計(jì)矩陣,因此亦稱為估計(jì)的廣義最小二乘法(EstimatedGeneralizedLeastSquares,EGLS)。FGLS法的第一步是確定異方差性的具體形式,也就是找出決定擾動(dòng)項(xiàng)方差與某組已知數(shù)值之間關(guān)系的函數(shù)形式,然后用這個(gè)關(guān)系得到每個(gè)擾動(dòng)項(xiàng)方差的估計(jì)值,從而得到矩陣的估計(jì)值,最后計(jì)算FGLS估計(jì)量:例3.7Yt=β1+β2Xt+utt=1,2,…,n.其中Y=家庭消費(fèi)支出X=家庭可支配收入我們?cè)谇懊嬉逊治鲞^(guò),高收入家庭有較大的擾動(dòng)項(xiàng)方差,因此不妨假定擾動(dòng)項(xiàng)方差與可支配收入成正比,即Var(ut)=δXt,t=1,2,…,n.

式中δ是一未知常數(shù),由于Xt為已知,相當(dāng)于,而δ相當(dāng)于,因此

應(yīng)用GLS法,即可得出β的FGLS估計(jì)量。

在上例中我們假設(shè)擾動(dòng)項(xiàng)方差與解釋變量的取值成正比,這種假設(shè)是否真正合理呢?根據(jù)經(jīng)驗(yàn)和分析做出的這種假設(shè),雖然有一定道理,但未免顯得過(guò)于武斷,這方面還可做一些比較細(xì)致的工作。

Glesjer檢驗(yàn)法不僅可檢驗(yàn)異方差性的存在,還可用于提供有關(guān)異方差形式的進(jìn)一步信息,對(duì)于確定Ω矩陣很有用,下面我們扼要說(shuō)明格里瑟檢驗(yàn)法的思路和步驟。

格里瑟檢驗(yàn)法的思路格里瑟檢驗(yàn)法的思路是假定擾動(dòng)項(xiàng)方差與解釋變量之間存在冪次關(guān)系,方法是用對(duì)被認(rèn)為與擾動(dòng)項(xiàng)方差有關(guān)的解釋變量回歸,確定和該解釋變量的關(guān)系。由于與該解釋變量之間關(guān)系的實(shí)際形式是未知的,因此需要用該解釋變量的不同冪次進(jìn)行試驗(yàn),選擇出最佳擬合形式。具體步驟如下:

(1)因變量Y對(duì)所有解釋變量回歸,計(jì)算殘差et

(t=1,2,…,n)(2)對(duì)所選擇解釋變量的各種冪次形式回歸,如然后利用決定系數(shù),選擇擬合最佳的函數(shù)形式。(3)對(duì)β1進(jìn)行顯著性檢驗(yàn),若顯著異于0,則表明存在異方差性,否則再試其它形式。

例3.8Yt=β1+β2X1t+…+βk

Xkt+ut

假設(shè)我們根據(jù)經(jīng)驗(yàn)知道擾動(dòng)項(xiàng)方差與Xjt有關(guān),并用格里瑟法試驗(yàn),得出:

在大多數(shù)應(yīng)用中,由于通過(guò)矩陣運(yùn)算計(jì)算相對(duì)復(fù)雜,因而對(duì)于僅存在異方差性的問(wèn)題,通常采用另一種等價(jià)的方法-加權(quán)最小二乘法(WLS)。加權(quán)最小二乘法

對(duì)于僅存在異方差性的問(wèn)題,其Ω矩陣是一個(gè)對(duì)角矩陣,即

在這種情況下應(yīng)用廣義最小二乘法,也就是在原模型兩端左乘矩陣

變換原模型,再對(duì)變換后的模型應(yīng)用普通最小二乘法進(jìn)行估計(jì)。這種作法實(shí)際上等價(jià)于在代數(shù)形式的原模型

Yt=β0+β1X1t+…+βkXkt+ut

的兩端除以

t,得變換模型:相當(dāng)于在回歸中給因變量和解釋變量的每個(gè)觀測(cè)值都賦予一個(gè)與相應(yīng)擾動(dòng)項(xiàng)的方差相聯(lián)系的權(quán)數(shù),然后再對(duì)這些變換后的數(shù)據(jù)進(jìn)行OLS回歸,因而被稱為加權(quán)最小二乘法(WLS法,WeightedLeastSquares)。

加權(quán)最小二乘法是FGLS法的一個(gè)特例,在矩陣為對(duì)角矩陣這種特殊情形下,我們既可以直接應(yīng)用矩陣形式的可行廣義最小二乘估計(jì)量公式得到FGLS估計(jì)值,亦可避開(kāi)矩陣運(yùn)算,采用加權(quán)最小二乘法得到其WLS估計(jì)值,兩者結(jié)果完全相同,無(wú)論你稱之為FGLS估計(jì)值還是WLS估計(jì)值,二者是一碼事。例3.9

其中:Y=R&D支出,X=銷(xiāo)售額采用美國(guó)1988年18個(gè)行業(yè)的數(shù)據(jù)估計(jì)上述方程,結(jié)果如下(括號(hào)中數(shù)字為t值):

這里是橫截面數(shù)據(jù),由于行業(yè)之間的差別,可能存在異方差性。

假設(shè)

應(yīng)用格里瑟法試驗(yàn),得到異方差性形式為:將原模型(1)的兩端除以,得

用OLS法估計(jì)(2)式,結(jié)果如下(括號(hào)中數(shù)字為t值):

與(1)式的結(jié)果比較,兩個(gè)方程斜率系數(shù)的估計(jì)值相差不大,但采用WLS法估計(jì)的比直接用OLS法估計(jì)的系數(shù)更為顯著。2.仍采用OLS法估計(jì)系數(shù),但采用OLS估計(jì)量標(biāo)準(zhǔn)誤差的異方差性一致估計(jì)值代替其OLS估計(jì)值懷特(H.White)在1980年提出的產(chǎn)生OLS估計(jì)量的異方差性一致標(biāo)準(zhǔn)誤差的方法,為解決異方差性問(wèn)題提供了另一種途徑。懷特的貢獻(xiàn)是解決了異方差性造成系數(shù)的置信區(qū)間和假設(shè)檢驗(yàn)結(jié)果不可信賴的問(wèn)題,該后果是由于方差的OLS估計(jì)量不再是無(wú)偏估計(jì)量而造成的。

我們用簡(jiǎn)單線性回歸模型對(duì)懷特方法作一說(shuō)明。在異方差的情況下,的方差是

可以證明,將涉及所有的,而不是一個(gè)共同的。這意味著回歸軟件包所報(bào)告的作為的方差估計(jì)值有兩個(gè)錯(cuò)誤。擾動(dòng)項(xiàng)方差的估計(jì)量的期望均值第一,它用的不是方差的正確公式(5.25);第二,它用估計(jì)一個(gè)共同的,而事實(shí)上諸是不同的。懷特的方法是在(5.25)式中用取代,這里是第i個(gè)OLS殘差,即

請(qǐng)注意,我們并不能用得到的一致估計(jì)量,因?yàn)樵谶@種情況下,每個(gè)要估計(jì)的參數(shù)僅有一個(gè)觀測(cè)值,當(dāng)樣本增大時(shí),未知的數(shù)目也在同步增加。懷特得到的是的一致估計(jì)量,它是的加權(quán)平均。同樣的分析適用于多元回歸OLS估計(jì)量的情況,在這種情況下,用懷特方法得到的第K個(gè)OLS回歸系數(shù)的方差的異方差性一致估計(jì)值由下式給出:其中是從對(duì)方程中所有其它解釋變量回歸得到的OLS殘差的平方,為原多元回歸模型的第i個(gè)OLS殘差。很多回歸軟件包提供諸方差的懷特異方差性一致估計(jì)值以及對(duì)應(yīng)的穩(wěn)健t統(tǒng)計(jì)值(robustt-statistics)。例如,使用EViews,先點(diǎn)擊Quick,選擇EstimateEquation,再擊Options,從下拉菜單中選其中的一個(gè)選項(xiàng)White,即可得到諸方差的異方差性一致估計(jì)值。

通過(guò)使用諸方差的懷特異方差性一致估計(jì)值代替其OLS估計(jì)值,我們解決了異方差性造成系數(shù)的置信區(qū)間和假設(shè)檢驗(yàn)結(jié)果不可信賴的問(wèn)題,從而也就解決了在異方差性存在的情況下能否使用OLS法估計(jì)方程的問(wèn)題。結(jié)論是我們?nèi)钥捎肙LS法估計(jì)方程的系數(shù),因?yàn)楸M管存在異方差性,系數(shù)的OLS估計(jì)量畢竟還是無(wú)偏和一致估計(jì)量,應(yīng)該說(shuō)還是具有良好性質(zhì)的估計(jì)量。只不過(guò)方差-協(xié)方差矩陣不能再用OLS法估計(jì),而要采用懷特之類(lèi)的方法,得到一致估計(jì)量,如懷特的異方差性一致估計(jì)量。

這類(lèi)估計(jì)量的性質(zhì)不是“最好”,但它們對(duì)于某些假設(shè)條件(在這里是同方差性)的違背不敏感,這類(lèi)的估計(jì)量稱為穩(wěn)健估計(jì)量(robustestimators)。與我們前面介紹的FGLS法相比,本段介紹的解決異方差性的方法的優(yōu)越之處在于,不需要知道異方差性的具體形式。因此,在異方差性的基本結(jié)構(gòu)未知的情況下,建議仍采用OLS法估計(jì)系數(shù),而采用其方差的穩(wěn)健估計(jì)量,如懷特的異方差性一致估計(jì)量。五、實(shí)例

表3-6(具體數(shù)據(jù)見(jiàn)教材)給出世界31個(gè)國(guó)家2008年居民人均消費(fèi)支出和人均國(guó)民總收入的數(shù)據(jù)(以2000價(jià)格計(jì)算)。第三節(jié)自相關(guān)一、定義

若Cov(ui

,uj)=E(uiuj)=0,i≠j不成立,即線性回歸模型擾動(dòng)項(xiàng)的方差—協(xié)方差矩陣的非主對(duì)角線元素不全為0,則稱為擾動(dòng)項(xiàng)自相關(guān),或序列相關(guān)(SerialCorrelation)。自相關(guān)不是指兩個(gè)變量間的相關(guān)關(guān)系,而是同一變量前后期之間的相關(guān)關(guān)系。二、自相關(guān)的原因及后果

(1)沖擊的延期影響(慣性)在時(shí)間序列數(shù)據(jù)的情況下,隨機(jī)沖擊(擾動(dòng))的影響往往持續(xù)不止一個(gè)時(shí)期。例如,地震、洪水、罷工或戰(zhàn)爭(zhēng)等將在發(fā)生期的后續(xù)若干期中影響經(jīng)濟(jì)運(yùn)行。1.原因自相關(guān)主要發(fā)生在時(shí)間序列數(shù)據(jù)的情形,因而亦稱為序列相關(guān),主要有以下兩種原因:

微觀經(jīng)濟(jì)中也與此類(lèi)似,如一個(gè)工廠的產(chǎn)量,由于某種外部偶然因素的影響(如某種原材料的供應(yīng)出了問(wèn)題),該廠某周產(chǎn)量低于正常水平,那么,隨后的一周或幾周中,由于這種影響的存在或延續(xù),產(chǎn)量也很可能低于正常水平(即擾動(dòng)項(xiàng)為負(fù))。不難看出,觀測(cè)的周期越長(zhǎng),這種延期影響的嚴(yán)重性就越小,因此,年度數(shù)據(jù)比起季度數(shù)據(jù)來(lái),序列相關(guān)成為一個(gè)問(wèn)題可能性要小。

(2)誤設(shè)定如果忽略了一個(gè)有關(guān)的解釋變量,而該變量是自相關(guān)的,則將使擾動(dòng)項(xiàng)自相關(guān),不正確的函數(shù)形式也將導(dǎo)致同樣后果。在這些情況下,解決的方法是糾正誤設(shè)定。本章后面將介紹的糾正自相關(guān)的方法都不適用于這種情況的自相關(guān)。2.后果

自相關(guān)的后果與異方差性類(lèi)似。(1)在擾動(dòng)項(xiàng)自相關(guān)的情況下,盡管OLS估計(jì)量仍為無(wú)偏估計(jì)量,但不再具有最小方差的性質(zhì),

即不是BLUE。(2)OLS估計(jì)量的標(biāo)準(zhǔn)誤差不再是真實(shí)標(biāo)準(zhǔn)誤差的無(wú)偏估計(jì)量,使得在自相關(guān)的情況下,無(wú)法再信賴回歸參數(shù)的置信區(qū)間或假設(shè)檢驗(yàn)的結(jié)果。三、自相關(guān)的檢驗(yàn)1.檢驗(yàn)一階自相關(guān)的德賓—沃森檢驗(yàn)法(Durbin—Watsontest)(1)一階自相關(guān)自相關(guān)的最簡(jiǎn)單模式為:

ut

=ρut-1+εt,t=1,2,…,n.

其中ρ稱為自相關(guān)系數(shù)(-1≤ρ≤1),這種擾動(dòng)項(xiàng)的自相關(guān)稱為一階自相關(guān),即擾動(dòng)項(xiàng)僅與其前一期的值有關(guān)。我們有:

ρ>0正自相關(guān)

ρ<0負(fù)自相關(guān)

ρ=0無(wú)自相關(guān)

在一階自相關(guān)模式中,假定εt具有以下性質(zhì):

E(εt)=0,E(εt2)=σ2=常數(shù),

E(εiεj)=0,i≠j,εt服從正態(tài)分布。在計(jì)量經(jīng)濟(jì)學(xué)中,具備上述性質(zhì)的量稱為白噪聲(Whitenoise),表示為

εt=Whitenoise

εt=白噪聲(2)德賓—沃森檢驗(yàn)法(Durbin=Watsondtest)

統(tǒng)計(jì)軟件包和研究報(bào)告在提供回歸結(jié)果時(shí)通常都給出DW(或d)統(tǒng)計(jì)量的值,該統(tǒng)計(jì)量是從OLS回歸的殘差中計(jì)算得來(lái)的,它被用于一階自相關(guān)的檢驗(yàn),計(jì)算公式為:

DW和一階自相關(guān)系數(shù)ρ的估計(jì)值之間存在以下近似關(guān)系:

DW≈2-2

由于-1≤ρ≤1,因而0≤DW≤4。不難看出,直觀判斷準(zhǔn)則是,當(dāng)DW統(tǒng)計(jì)量接近2時(shí),則無(wú)自相關(guān),DW值離2越遠(yuǎn),則自相關(guān)存在的可能性越大。DW檢驗(yàn)的缺陷

我們當(dāng)然期望有一張能夠給出相應(yīng)的n、k和α值下各種DW臨界值的表(就象t檢驗(yàn),F(xiàn)檢驗(yàn)一樣),使得我們可以按常規(guī)假設(shè)檢驗(yàn)?zāi)菢痈鶕?jù)臨界值作出判斷。不幸的是,DW統(tǒng)計(jì)量的分布依賴于解釋變量的具體觀測(cè)值(即依賴于X矩陣)。因此不象t、F檢驗(yàn)?zāi)菢?,有一張能夠給出DW臨界值的表。為解決這一問(wèn)題,德賓和沃森證明,DW統(tǒng)計(jì)量的真實(shí)分布位于兩個(gè)極限分布之間,這兩個(gè)分布分別稱為下分布和上分布,如下圖所示:每個(gè)分布的95%臨界水平用A,B,C,D表示。概率密度0ABCDDW值下分布上分布

現(xiàn)假設(shè)DW統(tǒng)計(jì)量的值位于A的左邊,則不管這種情況下的DW統(tǒng)計(jì)量服從何種分布(上,下或中間),無(wú)自相關(guān)的原假設(shè)將被拒絕。與此類(lèi)似,若DW統(tǒng)計(jì)量的值位于D的右邊,則亦可拒絕無(wú)自相關(guān)的原假設(shè)。若DW統(tǒng)計(jì)量的值位于B和C之間,則可接受原假設(shè)。而當(dāng)DW統(tǒng)計(jì)量的值位于A和B之間或C和D之間時(shí),則無(wú)法得出結(jié)論。上述分析可以概括為:

DW<A或DW>D存在自相關(guān)

B<DW<C無(wú)自相關(guān)

A<DW<B或C<DW<D無(wú)結(jié)論區(qū)德賓和沃森據(jù)此導(dǎo)出了一個(gè)下界dL和一個(gè)上界du來(lái)檢驗(yàn)自相關(guān),dL和du僅依賴于觀測(cè)值的數(shù)目n、解釋變量k,以及顯著性水平α,而不依賴于解釋變量所取的值。(請(qǐng)參閱DW表)。無(wú)結(jié)論區(qū)的存在是DW法的最大缺陷。實(shí)際的檢驗(yàn)程序可用下面的示意圖說(shuō)明。0

dL

du

24—du

4—dL

4正自相關(guān)無(wú)結(jié)論區(qū)無(wú)自相關(guān)無(wú)結(jié)論區(qū)負(fù)自相關(guān)

若DW<dL,則存在正相關(guān)若DW<2若dL

<DW<du,無(wú)結(jié)論 若du

<DW,則無(wú)自相關(guān)若DW>2,則令DW′=4-DW,按上述準(zhǔn)則進(jìn)行判別。

檢驗(yàn)程序如下:a.用OLS法對(duì)原模型進(jìn)行回歸,得殘差et(t=1,2,…,n)。

b.計(jì)算DW值(計(jì)算機(jī)程序給出DW值)。

c.用N,K和α查表得dL,du。

d.判別例:DW=3.5,則DW′=4-3.5=0.5

查表(n=30,k=2,α=5%)得:dL=1.28DW′=0.5<1.28

結(jié)論:存在自相關(guān)。2.布魯奇-戈弗雷檢驗(yàn)法

DW檢驗(yàn)法的優(yōu)點(diǎn)是簡(jiǎn)單方便,各類(lèi)回歸軟件包的回歸輸出中都會(huì)提供DW值,通常為判斷是否存在一階自相關(guān)提供了直觀的依據(jù)??墒荄W檢驗(yàn)法除了我們上面討論過(guò)的存在無(wú)結(jié)論區(qū)的缺陷外,還有一些使用范圍上的限制:(1)只能檢驗(yàn)一階自相關(guān);(2)在方程的解釋變量中包括滯后因變量(如Yt-1、Yt-2等)時(shí),用DW法容易產(chǎn)生偏差;(3)當(dāng)回歸中無(wú)常數(shù)項(xiàng)時(shí),也不宜采用DW法。

針對(duì)DW檢驗(yàn)法的上述缺陷和限制,計(jì)量經(jīng)濟(jì)學(xué)家提出了不少檢驗(yàn)擾動(dòng)項(xiàng)自相關(guān)的方法,其中用得最廣泛的是布魯奇(T.S.Breusch)和戈弗雷(L.G.Godfrey)在20世紀(jì)70年代末期提出的方法,該方法也被稱為拉格朗日乘數(shù)法(LM法)。

布魯奇和戈弗雷的思路是用原模型的OLS殘差et對(duì)et-1以及原模型中的諸解釋變量進(jìn)行回歸,檢驗(yàn)統(tǒng)計(jì)量是nR2,它在原假設(shè)(et-1的系數(shù)為0)下的分布是自由度為1的

分布。A式中諸X也可以包括滯后因變量。

布魯奇-戈弗雷檢驗(yàn)法解決了DW法的缺陷和限制,用起來(lái)也不復(fù)雜。該方法的優(yōu)勢(shì)在于它不僅可檢驗(yàn)一階自相關(guān),而且很容易推廣到高階自相關(guān)的檢驗(yàn)。

考慮回歸模型我們要檢驗(yàn)的是:,即擾動(dòng)項(xiàng)不存在任何階數(shù)的自相關(guān)。LM檢驗(yàn)步驟如下:

(1)用OLS法估計(jì)A式,得到最小二乘殘差;

(2)然后估計(jì)下面的方程:計(jì)算R2值,(3)檢驗(yàn)是否所有的系數(shù)都等于0。這里通常不用F檢驗(yàn)而用檢驗(yàn),因?yàn)長(zhǎng)M檢驗(yàn)是大樣本檢驗(yàn)。檢驗(yàn)統(tǒng)計(jì)量為,該統(tǒng)計(jì)量服從自由度為P的分布,即LM檢驗(yàn)的缺點(diǎn)是,滯后長(zhǎng)度P不能先驗(yàn)地確定,需要反復(fù)試,可以考慮用赤池和施瓦茨信息準(zhǔn)則來(lái)選擇滯后長(zhǎng)度。四、消除自相關(guān)的方法從自相關(guān)的定義和所造成的后果來(lái)看,自相關(guān)與異方差性有很多類(lèi)似之處。這不是偶然的,它們都涉及擾動(dòng)項(xiàng)的方差-協(xié)方差矩陣等于的假設(shè)條件遭到了破壞。因此可以將它們歸為同一類(lèi)問(wèn)題:非球形擾動(dòng)項(xiàng)(Non-sphericaldisturbances)。由于這個(gè)原因,消除自相關(guān)的方法也與異方差性類(lèi)似,一是采用FGLS法,二是仍用OLS法,但使用方差-協(xié)方差矩陣的穩(wěn)健估計(jì)值。1.FGLS法我們?cè)谏弦还?jié)介紹時(shí)提到,F(xiàn)GLS法的核心是估計(jì)矩陣。對(duì)于單純異方差性的情況,只涉及主對(duì)角線元素的估計(jì),結(jié)合實(shí)際問(wèn)題提供的有關(guān)異方差性基本結(jié)構(gòu)的信息,就有可能估計(jì)出矩陣。自相關(guān)的情況下,需要估計(jì)的元素要多得多,事實(shí)上,由于是對(duì)稱矩陣,要估計(jì)的元素個(gè)數(shù)是。在只有n個(gè)觀測(cè)值的情況下,不存在可行的估計(jì)方法。因此需要做某種假設(shè)以簡(jiǎn)化問(wèn)題,使得我們可以用很少的參數(shù)來(lái)表示矩陣中的各協(xié)方差,估計(jì)出這些參數(shù)后,也就估計(jì)出了矩陣。其中最著名的是假設(shè)擾動(dòng)項(xiàng)的自相關(guān)模式為一階自相關(guān),我們下面就來(lái)討論消除一階自相關(guān)的方法。

如果實(shí)際問(wèn)題的自相關(guān)模式為一階自相關(guān),則只要知道ρ,就可以完全消除自相關(guān),下面用雙變量模型來(lái)說(shuō)明,但同樣的原理適用于多個(gè)解釋變量的情形。設(shè)Yt=α+βXt+ut

(1)

ut=ρut-1+εt

其中εt是白噪聲,且ρ≠0。(1)式兩端取一期滯后,得

Yt-1=α+βXt-1+ut

-1

(2)

(2)式兩端乘以ρ,得

ρYt-1=αρ+βρXt-1+ρut

-1

(3)(1)-(3),得:

Yt-ρYt-1=α(1-ρ)+β(Xt-ρXt-1)+(ut

-ρut

-1)

(4)(4)式中的擾動(dòng)項(xiàng)為ut

-ρut–1=εt,從而滿足標(biāo)準(zhǔn)假設(shè)條件。令Yt′=

Yt-ρYt-1

Xt′=Xt-ρXt-1

α′=α(1-ρ),有

Yt′=α′+βXt′+εt

(5)若ρ為已知,我們就可用OLS法直接估計(jì)(5)式,否則需要先估計(jì)ρ。

實(shí)際上,人們并不知道它們的具體數(shù)值,所以必須首先對(duì)它們進(jìn)行估計(jì)。

常用的估計(jì)方法有:

科克倫-奧科特(Cochrane-Orcutt)迭代法。希爾德雷斯—盧法(1)科克倫—奧克特法(Cochrane—Orcutt)

科克倫—奧克特法是一個(gè)迭代過(guò)程,步驟如下:① 估計(jì)原模型((1)式),計(jì)算OLS殘差et(t=1,2,…,n)。② et對(duì)et-1回歸,即估計(jì)et=ρet-1+εt,得到ρ的估計(jì)值③ 用產(chǎn)生

然后估計(jì)Yt′=α′+βXt′+εt

,得到α和β的估計(jì)值和。④ 重新計(jì)算殘差,返回第②步。此過(guò)程不斷修改,和,直至收斂。(2)希爾德雷斯—盧法(Hildreth—lu)

此方法實(shí)際上是一種格點(diǎn)搜索法(Gridsearch),即在ρ的預(yù)先指定范圍(如-1至1)內(nèi)指定格點(diǎn)之間距離(如0.01),然后用這樣產(chǎn)生的全部ρ值(-1.00,-0.99,…,1.00)產(chǎn)生

Yt′=

Yt-ρYt—1

Xt′=

Xt-ρXt—1然后估計(jì)

Yt′=α′+βXt′+εt

產(chǎn)生最小標(biāo)準(zhǔn)誤差的ρ值即作為ρ的估計(jì)值,用該值得到的和即為原模型的系數(shù)估計(jì)值。

上面消除一階自相關(guān)的方法,不難推廣到高階自相關(guān),如二階或三階自相關(guān)的處理。當(dāng)然,階數(shù)不宜過(guò)高,要估計(jì)的參數(shù)越多,困難越大。事實(shí)上,也沒(méi)有必要,因?yàn)榍懊娓髌跀_動(dòng)項(xiàng)對(duì)當(dāng)期擾動(dòng)項(xiàng)的影響是迅速衰減的。計(jì)量經(jīng)濟(jì)軟件通常提供消除一階自相關(guān)和高階自相關(guān)的命令,操作非常簡(jiǎn)便,如EViews中的AR(1)、AR(2)等,加在回歸命令的最后即可。

4.仍用OLS法估計(jì)系數(shù),但使用方差-協(xié)方差矩陣的穩(wěn)健估計(jì)值

Newey和West1987年給出了OLS估計(jì)量一個(gè)簡(jiǎn)單的異方差性和自相關(guān)一致方差協(xié)方差矩陣,無(wú)須規(guī)定序列相關(guān)的函數(shù)形式。該方法在懷特用OLS殘差平方替代方差思路的基礎(chǔ)上進(jìn)行了拓展,加上了OLS殘差的積其中p是我們希望假定的序列相關(guān)的最大階數(shù)。Newey和West方法允許給高階的協(xié)方差項(xiàng)賦予遞減的權(quán)重。

EViews中也提供了Newey和West方法。五、實(shí)例

表3-10(見(jiàn)教材)給出我國(guó)1985-2009年農(nóng)村居民人均消費(fèi)支出和人均純收入及農(nóng)村居民消費(fèi)價(jià)格指數(shù)的數(shù)據(jù)。OLS回歸結(jié)果如下(括號(hào)中數(shù)字為標(biāo)準(zhǔn)誤差):其中,CR=農(nóng)村居民人均不變價(jià)消費(fèi)支出(1985=100);YR=農(nóng)村居民人均不變價(jià)純收入(1985=100);下面對(duì)模型進(jìn)行自相關(guān)的檢驗(yàn)。1.DW檢驗(yàn)?zāi)P虳W值為0.366,查臨界值表(n=25,k=1,=5%)得dL=1.288,由于DW=0.366<dL,故存在一階自相關(guān)。下面我們?cè)贆z驗(yàn)是否存在高階自相關(guān)。2.布魯奇-戈弗雷檢驗(yàn)(LM檢驗(yàn))采用布魯奇-戈弗雷法檢驗(yàn)四階(P=4)自相關(guān),結(jié)果如表3-11所示。根據(jù)表3-6的結(jié)果,我們有:檢驗(yàn)統(tǒng)計(jì)量nR2=17.028,由于相應(yīng)的P值為0.0019,因而拒絕無(wú)序列相關(guān)的原假設(shè)。但從結(jié)果中看到,et-2、et-3、et-4的t值都不顯著,如此看來(lái),模型僅存在一階自相關(guān)。在EViews中,可直接通過(guò)下面命令得到上面這兩步的結(jié)果:LsCRtcYRtAR(1)原方程:第五節(jié)隨機(jī)解釋變量本節(jié)討論解釋變量為非隨機(jī)量的假設(shè)不成立的情況。一、隨機(jī)解釋變量造成的估計(jì)問(wèn)題為簡(jiǎn)單起見(jiàn),我們以雙變量模型為例來(lái)討論,結(jié)論同樣適用于多元線性回歸模型。第(4)條假設(shè)是一個(gè)比較強(qiáng)的假設(shè),它表明解釋變量X是非隨機(jī)的,即在重復(fù)抽樣的情況下取固定值,因而與各期擾動(dòng)項(xiàng)無(wú)關(guān)。由此,我們證明了最小二乘估計(jì)量的無(wú)偏性,我們也不難證明最小二乘估計(jì)量的一致性。

由統(tǒng)計(jì)學(xué)得知,一致性(即估計(jì)量是一致估計(jì)量)的充分條件是:對(duì)于OLS估計(jì)量,我們有對(duì)于任何n成立,并且當(dāng)n趨向

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論