版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年遼寧生態(tài)工程職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.過(guò)點(diǎn)(2,4)作直線(xiàn)與拋物線(xiàn)y2=8x只有一個(gè)公共點(diǎn),這樣的直線(xiàn)有()
A.1條
B.2條
C.3條
D.4條答案:B2.在某路段檢測(cè)點(diǎn)對(duì)200輛汽車(chē)的車(chē)速進(jìn)行檢測(cè),檢測(cè)結(jié)果表示為如圖所示的頻率分布直方圖,則車(chē)速不小于90km/h的汽車(chē)有輛.()A.60B.90C.120D.150答案:頻率=頻率組距×組距=(0.02+0.01)×10=0.3,頻數(shù)=頻率×樣本總數(shù)=200×0.3=60(輛).故選A.3.O、A、B、C為空間四個(gè)點(diǎn),又為空間的一個(gè)基底,則()
A.O、A、B、C四點(diǎn)共線(xiàn)
B.O、A、B、C四點(diǎn)共面,但不共線(xiàn)
C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線(xiàn)
D.O、A、B、C四點(diǎn)不共面答案:D4.①某尋呼臺(tái)一小時(shí)內(nèi)收到的尋呼次數(shù)X;
②長(zhǎng)江上某水文站觀(guān)察到一天中的水位X;
③某超市一天中的顧客量X.
其中的X是連續(xù)型隨機(jī)變量的是()
A.①
B.②
C.③
D.①②③答案:B5.(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線(xiàn)上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線(xiàn)段CE的長(zhǎng)為_(kāi)_____.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時(shí),x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時(shí),有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時(shí),有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線(xiàn)定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.6.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為107.一個(gè)箱子中裝有質(zhì)量均勻的10個(gè)白球和9個(gè)黑球,一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個(gè)白球中取5個(gè)白球有C105種9個(gè)黑球中取5個(gè)黑球有C95種∴一次摸出5個(gè)球,它們的顏色相同的有C105+C95種∴一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:238.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點(diǎn),
(Ⅰ)求證:DM⊥EB;
(Ⅱ)設(shè)二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線(xiàn)AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設(shè)平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個(gè)法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22?12+02+
02=13,即cosβ=139.已知x,y之間的一組數(shù)據(jù):
x0123y1357則y與x的回歸方程必經(jīng)過(guò)()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4)根據(jù)線(xiàn)性回歸方程一定過(guò)樣本中心點(diǎn),∴線(xiàn)性回歸方程y=a+bx所表示的直線(xiàn)必經(jīng)過(guò)點(diǎn)(1.5,4)故選C10.圓x2+y2=1上的點(diǎn)到直線(xiàn)x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點(diǎn)到直線(xiàn)距離最大值為:半徑+圓心到直線(xiàn)的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:311.已知直線(xiàn)l過(guò)點(diǎn)P(1,0,-1),平行于向量=(2,1,1),平面α過(guò)直線(xiàn)l與點(diǎn)M(1,2,3),則平面α的法向量不可能是()
A.(1,-4,2)
B.(,-1,)
C.(-,-1,-)
D.(0,-1,1)答案:D12.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域?yàn)開(kāi)_____.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].13.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當(dāng)施化肥量為50kg時(shí),預(yù)計(jì)小麥產(chǎn)量為_(kāi)_____kg.答案:根據(jù)回歸方程為y=250+4x,當(dāng)施化肥量為50kg,即x=50kg時(shí),y=250+4x=250+200=450kg故為:45014.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:115.命題“對(duì)于正數(shù)a,若a>1,則lg
a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個(gè)數(shù)為()A.0B.1C.2D.4答案:原命題“對(duì)于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對(duì)于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對(duì)于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對(duì)于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.16.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線(xiàn),向量c=2e1-9e2.問(wèn)是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線(xiàn)?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線(xiàn),則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線(xiàn).17.設(shè)集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.18.已知有如下兩段程序:
問(wèn):程序1運(yùn)行的結(jié)果為_(kāi)_____.程序2運(yùn)行的結(jié)果為_(kāi)_____.
答案:程序1是計(jì)數(shù)變量i=21開(kāi)始,不滿(mǎn)足i≤20,終止循環(huán),累加變量sum=0,這個(gè)程序計(jì)算的結(jié)果:sum=0;程序2計(jì)數(shù)變量i=21,開(kāi)始進(jìn)入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開(kāi)始,這個(gè)程序計(jì)算的是sum=21.故為:0;21.19.電視機(jī)的使用壽命顯像管開(kāi)關(guān)的次數(shù)有關(guān).某品牌電視機(jī)的顯像管開(kāi)關(guān)了10000次還能繼續(xù)使用的概率是0.96,開(kāi)關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開(kāi)關(guān)了10000次的電視機(jī)顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開(kāi)關(guān)了10000次還能繼續(xù)使用”為事件A,記“開(kāi)關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計(jì)算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.20.
在△ABC中,點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上,且BC=3CD,點(diǎn)O在線(xiàn)段CD上(與點(diǎn)C、D不重合),若AO=xAB+(1-x)AC,則x的取值范圍是()
A.
B.
C.
D.答案:D21.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.22.下列命題中為真命題的是(
)
A.平行直線(xiàn)的傾斜角相等
B.平行直線(xiàn)的斜率相等
C.互相垂直的兩直線(xiàn)的傾斜角互補(bǔ)
D.互相垂直的兩直線(xiàn)的斜率互為相反數(shù)答案:A23.三行三列的方陣.a11a12
a13a21a22
a23a31a32
a33.中有9個(gè)數(shù)aji(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則它們不同行且不同列的概率是()A.37B.47C.114D.1314答案:從給出的9個(gè)數(shù)中任取3個(gè)數(shù),共有C39;從三行三列的方陣中任取三個(gè)數(shù),使它們不同行且不同列:從第一行中任取一個(gè)數(shù)有C13種方法,則第二行只能從另外兩列中的兩個(gè)數(shù)任取一個(gè)有C12種方法,第三行只能從剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴從三行三列的方陣中任取三個(gè)數(shù),則它們不同行且同列的概率P=6C39=114.故選C.24.曲線(xiàn)y=log2x在M=0110作用下變換的結(jié)果是曲線(xiàn)方程______.答案:設(shè)P(x,y)是曲線(xiàn)y=log2x上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣M=0110對(duì)應(yīng)變換作用下新曲線(xiàn)上的對(duì)應(yīng)點(diǎn),則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線(xiàn)y=log2x,得x′=log2y′,(8分)即y′=2x′曲線(xiàn)y=log2x在M=0110作用下變換的結(jié)果是曲線(xiàn)方程y=2x故為:y=2x25.已知M(x0,y0)是圓x2+y2=r2(r>0)內(nèi)異于圓心的一點(diǎn),則直線(xiàn)x0x+y0y=r2與此圓有何種位置關(guān)系?答案:圓心O(0,0)到直線(xiàn)x0x+y0y=r2的距離為d=r2x20+y20.∵P(x0,y0)在圓內(nèi),∴x20+y20<r.則有d>r,故直線(xiàn)和圓相離.26.拋物線(xiàn)y=4x2的焦點(diǎn)坐標(biāo)是()
A.(0,1)
B.(0,)
C.(1,0)
D.(,0)答案:B27.在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為(2,0),直線(xiàn)l的極坐標(biāo)方程為ρ(cosθ+sinθ)+2=0,則點(diǎn)A到直線(xiàn)l的距離為_(kāi)_____.答案:由題意得點(diǎn)A(2,0),直線(xiàn)l為
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴點(diǎn)A到直線(xiàn)l的距離為
|2+0+2|2=22,故為22.28.利用獨(dú)立性檢驗(yàn)對(duì)兩個(gè)分類(lèi)變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說(shuō)事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()
A.K2≥6.635
B.K2<6.635
C.K2≥7.879
D.K2<7.879答案:C29.在z軸上與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)C的坐標(biāo)為
______.答案:由題意設(shè)C(0,0,z),∵C與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點(diǎn)的坐標(biāo)是(0,0,149)故為:(0,0,149)30.正十邊形的一個(gè)內(nèi)角是多少度?答案:由多邊形內(nèi)角和公式180°(n-2),∴每一個(gè)內(nèi)角的度數(shù)是180°(n-2)n當(dāng)n=10時(shí).得到一個(gè)內(nèi)角為180°(10-2)10=144°31.方程2x2+ky2=1表示的曲線(xiàn)是長(zhǎng)軸在y軸的橢圓,則實(shí)數(shù)k的范圍是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:橢圓方程化為x212+y21k=1.焦點(diǎn)在y軸上,則1k>12,即k<2.又k>0,∴0<k<2.故選C.32.若關(guān)于x的方程x2-2ax+2+a=0有兩個(gè)不相等的實(shí)根,求分別滿(mǎn)足下列條件的a的取值范圍.
(1)方程兩根都大于1;
(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。33.一口袋內(nèi)裝有5個(gè)黃球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時(shí)停止,停止時(shí)取球的次數(shù)ξ是一個(gè)隨機(jī)變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故為C911(38)10(58)234.已知x,y之間的一組數(shù)據(jù):x1.081.121.191.28y2.252.372.402.55y與x之間的線(xiàn)性性回歸方y(tǒng)=bx+a必過(guò)定點(diǎn)______.答案:回歸直線(xiàn)方程一定過(guò)樣本的中心點(diǎn)(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,
.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點(diǎn)是(1.1675,2.3925),故為(1.1675,2.3925).35.直線(xiàn)l與拋物線(xiàn)y2=2x相交于A(yíng)、B兩點(diǎn),O為拋物線(xiàn)的頂點(diǎn),若OA⊥OB.證明:直線(xiàn)l過(guò)定點(diǎn).答案:證明:設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2)(I)當(dāng)直線(xiàn)l有存在斜率時(shí),設(shè)直線(xiàn)方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&
y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線(xiàn)l的方程為:y=kx-2k=k(x-2),故直線(xiàn)過(guò)定點(diǎn)(2,0)(11分)(II)當(dāng)直線(xiàn)l不存在斜率時(shí),設(shè)它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線(xiàn)l方程為:x=2,故直線(xiàn)過(guò)定點(diǎn)(2,0)綜合(1)(2)可知,滿(mǎn)足條件的直線(xiàn)過(guò)定點(diǎn)(2,0).36.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),則△ABC的面積等于()
A.
B.
C.
D.
答案:A37.設(shè)向量=(0,2),=,則,的夾角等于(
)
A.
B.
C.
D.答案:A38.已知兩點(diǎn)P(4,-9),Q(-2,3),則直線(xiàn)PQ與y軸的交點(diǎn)分有向線(xiàn)段PQ的比為_(kāi)_____.答案:直線(xiàn)PQ與y軸的交點(diǎn)的橫坐標(biāo)等于0,由定比分點(diǎn)坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線(xiàn)PQ與y軸的交點(diǎn)分有向線(xiàn)段PQ的比為
λ=2,故為:2.39.如圖,以1×3方格紙中的格點(diǎn)為起點(diǎn)和終點(diǎn)的所有向量中,有多少種大小不同的模?有多少種不同的方向?
答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個(gè)模,進(jìn)而分析方向,正方形的邊對(duì)應(yīng)的向量共有四個(gè)方向,邊長(zhǎng)為1的正方形的對(duì)角線(xiàn)對(duì)應(yīng)的向量共四個(gè)方向;1×2的矩形的對(duì)角線(xiàn)對(duì)應(yīng)的向量共四個(gè)方向;1×3的矩形對(duì)角線(xiàn)對(duì)應(yīng)的向量共有四個(gè)方向共有16個(gè)方向40.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B41.有一批機(jī)器,編號(hào)為1,2,3,…,112,為調(diào)查機(jī)器的質(zhì)量問(wèn)題,打算抽取10臺(tái),問(wèn)此樣本若采用簡(jiǎn)單的隨機(jī)抽樣方法將如何獲得?答案:本題可以采用抽簽法來(lái)抽取樣本,首先把該校學(xué)生都編上號(hào)001,002,112…用抽簽法做112個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取10次,就得到一個(gè)容量為10的樣本.42.知x、y、z均為實(shí)數(shù),
(1)若x+y+z=1,求證:++≤3;
(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明
因?yàn)椋?+)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.
7分(2)解
因?yàn)?12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.
14分43.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點(diǎn)坐標(biāo)為
______.答案:設(shè)C(x,y,z),則:
AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)44.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點(diǎn)E,則此圖形中一定相似的三角形有()對(duì).
A.0
B.3
C.2
D.1
答案:C45.設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因?yàn)?<a<1時(shí),y=logax為減函數(shù),所以p>m>n故選D46.給出一個(gè)程序框圖,輸出的結(jié)果為s=132,則判斷框中應(yīng)填()
A.i≥11
B.i≥10
C.i≤11
D.i≤12
答案:A47.在方程(θ為參數(shù)且θ∈R)表示的曲線(xiàn)上的一個(gè)點(diǎn)的坐標(biāo)是()
A.(,)
B.(,)
C.(2,-7)
D.(1,0)答案:B48.構(gòu)成多面體的面最少是()
A.三個(gè)
B.四個(gè)
C.五個(gè)
D.六個(gè)答案:B49.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序空白框圖,將空白處補(bǔ)上.
①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序,由于第一次執(zhí)行循環(huán)時(shí)的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計(jì)數(shù)變量i為2,步長(zhǎng)為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.50.畫(huà)出《數(shù)學(xué)3》第一章“算法初步”的知識(shí)結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識(shí)包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語(yǔ)句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語(yǔ)句是指輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句和循環(huán)語(yǔ)句.故《數(shù)學(xué)3》第一章“算法初步”的知識(shí)結(jié)構(gòu)圖示意圖如下:第2卷一.綜合題(共50題)1.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關(guān)系是()
A.內(nèi)含
B.內(nèi)切
C.相交
D.外切答案:A2.一個(gè)口袋內(nèi)有5個(gè)白球和3個(gè)黑球,任意取出一個(gè),如果是黑球,則這個(gè)黑球不放回且另外放入一個(gè)白球,這樣繼續(xù)下去,直到取出的球是白球?yàn)橹梗笕〉桨浊蛩璧拇螖?shù)ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=3792563.抽樣方法有()A.隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣B.隨機(jī)數(shù)法、抽簽法和分層抽樣法C.簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣D.系統(tǒng)抽樣、分層抽樣和隨機(jī)數(shù)法答案:我們常用的抽樣方法有:簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,而抽簽法和隨機(jī)數(shù)法,只是簡(jiǎn)單隨機(jī)抽樣的兩種不同抽取方法故選C4.設(shè)集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.5.如圖,在△ABC中,D是AC的中點(diǎn),E是BD的中點(diǎn),AE交BC于F,則的值等于()
A.
B.
C.
D.
答案:A6.若向量a=(-1,2),b=(-4,3),則a在b方向上的投影為()A.2B.22C.23D.10答案:設(shè)a與
b的夾角為θ,則cosθ=a?b|a|?|b|=4+65×5=25,∴則a在b方向上的投影為|a|?cosθ=5×25=2,故選A.7.若向量a,b,c滿(mǎn)足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.8.選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)O與原點(diǎn)重合,極軸與x軸的正半軸重合.點(diǎn)A,B的極坐標(biāo)分別為(2,π),(22,π4),曲線(xiàn)C的參數(shù)方程為答案:(Ⅰ)S△AOB=12×2×29.在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,“若x2的觀(guān)測(cè)值為6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系”這句話(huà)的意思是指()
A.在100個(gè)吸煙的人中,必有99個(gè)人患肺病
B.有1%的可能性認(rèn)為推理出現(xiàn)錯(cuò)誤
C.若某人吸煙,則他有99%的可能性患有肺病
D.若某人患肺病,則99%是因?yàn)槲鼰煷鸢福築10.如圖,四條直線(xiàn)互相平行,且相鄰兩條平行線(xiàn)的距離均為h,一直正方形的4個(gè)頂點(diǎn)分別在四條直線(xiàn)上,則正方形的面積為()
A.4h2
B.5h2
C.4h2
D.5h2
答案:B11.等于()
A.a(chǎn)
B.a(chǎn)2
C.a(chǎn)3
D.a(chǎn)4答案:B12.已知,求證:.答案:證明略解析:因?yàn)槭禽啌Q對(duì)稱(chēng)不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.【名師指引】綜合法證明不等式常用兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運(yùn)用時(shí)要結(jié)合題目條件,有時(shí)要適當(dāng)變形.13.設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動(dòng)點(diǎn),已知|a|+|b|=4.
(1)求點(diǎn)p的軌跡方程;
(2)設(shè)點(diǎn)p的軌跡與x軸負(fù)半軸交于點(diǎn)A,過(guò)點(diǎn)F(1,0)的直線(xiàn)交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請(qǐng)說(shuō)明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以動(dòng)點(diǎn)P的軌跡M是以點(diǎn)E(-1,0),F(xiàn)(1,0)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓.因?yàn)閏=1,a=2,則b2=a2-c2=3.故動(dòng)點(diǎn)P的軌跡M方程是x24+y23=1(2)設(shè)直線(xiàn)BC的方程x=my+1與(1)中的橢圓方程x24+y23=1聯(lián)立消去x可得(3m2+4)y2+6my-9=0,設(shè)點(diǎn)B(x1,y1),C(x2,y2)則y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4點(diǎn)A到直線(xiàn)BC的距離d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面積最大值為9214.設(shè)x1、x2、y1、y2是實(shí)數(shù),且滿(mǎn)足x12+x22≤1,
證明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:證明略解析:分析:要證原不等式成立,也就是證(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)當(dāng)x12+x22=1時(shí),原不等式成立.……………3分(2)當(dāng)x12+x22<1時(shí),聯(lián)想根的判別式,可構(gòu)造函數(shù)f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判別式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由題意x12+x22<1,函數(shù)f(x)的圖象開(kāi)口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此拋物線(xiàn)與x軸必有公共點(diǎn).∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分15.有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點(diǎn)A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時(shí)針旋轉(zhuǎn)45°”.
(Ⅰ)寫(xiě)出矩陣M及其逆矩陣M-1;
(Ⅱ)請(qǐng)寫(xiě)出△ABC在矩陣M-1對(duì)應(yīng)的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過(guò)P(2,0)作傾斜角為α的直線(xiàn)l與曲線(xiàn)E:x=cosθy=22sinθ(θ為參數(shù))交于A(yíng),B兩點(diǎn).
(Ⅰ)求曲線(xiàn)E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5
不等式證明選講)
已知正實(shí)數(shù)a、b、c滿(mǎn)足條件a+b+c=3,
(Ⅰ)求證:a+b+c≤3;
(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)
cos(-45°)=2222-2222∵矩陣M表示變換“順時(shí)針旋轉(zhuǎn)45°”∴矩陣M-1表示變換“逆時(shí)針旋轉(zhuǎn)45°”∴M-1=cos45°-sin45°sin45°
cos45°=22-2222
22(Ⅱ)三角形ABC的面積S△ABC=12×(3-1)×2=2,由于△ABC在旋轉(zhuǎn)變換下所得△A1B1C1與△ABC全等,故三角形的面積不變,即S△A1B1C1=2.(2)(Ⅰ)曲線(xiàn)E的普通方程為x2+2y2=1L的參數(shù)方程為x=2+tcosαy=tsinα(t為參數(shù))
(Ⅱ)將L的參數(shù)方程代入由線(xiàn)E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)證明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3當(dāng)且僅當(dāng)a=b=c=1,取等號(hào).(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,則2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,當(dāng)且僅當(dāng)a=b=1時(shí),c有最大值1.16.(選做題)
曲線(xiàn)(θ為參數(shù))與直線(xiàn)y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(
).答案:0<a≤117.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),現(xiàn)從袋中任意取出3個(gè)小球,假設(shè)每個(gè)小球被取出的可能性都相等.
(Ⅰ)求取出的3個(gè)小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同的概率;
(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個(gè)小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,則X≥4包含取出的3個(gè)小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個(gè)小球上的最大數(shù)字為4時(shí),P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個(gè)小球上的最大數(shù)字為5時(shí),P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.18.過(guò)點(diǎn)P(2,3)且以a=(1,3)為方向向量的直線(xiàn)l的方程為_(kāi)_____.答案:設(shè)直線(xiàn)l的另一個(gè)方向向量為a=(1,k),其中k是直線(xiàn)的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線(xiàn)l的點(diǎn)斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.19.已知兩點(diǎn)P1(2,-1)、P2(0,5),點(diǎn)P在P1P2延長(zhǎng)線(xiàn)上,且滿(mǎn)足P1P2=-2PP2,則P點(diǎn)的坐標(biāo)為_(kāi)_____.答案:設(shè)分點(diǎn)P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).20.若過(guò)點(diǎn)A(4,0)的直線(xiàn)l與曲線(xiàn)(x-2)2+y2=1有公共點(diǎn),則直線(xiàn)l的斜率的取值范圍為_(kāi)_____.答案:設(shè)直線(xiàn)l的方程為y=k(x-4),即kx-y-4k=0∵直線(xiàn)l與曲線(xiàn)(x-2)2+y2=1有公共點(diǎn),∴圓心到直線(xiàn)l的距離小于等于半徑即|2k-4k|k2+1≤1,解得-33≤
k≤33∴直線(xiàn)l的斜率的取值范圍為[-33,33]故為[-33,33]21.設(shè)過(guò)點(diǎn)A(p,0)(p>0)的直線(xiàn)l交拋物線(xiàn)y2=2px(p>0)于B、C兩點(diǎn),
(1)設(shè)直線(xiàn)l的傾斜角為α,寫(xiě)出直線(xiàn)l的參數(shù)方程;
(2)設(shè)P是BC的中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)軌跡的參數(shù)方程,并化為普通方程.答案:(1)l的參數(shù)方程為x=p+tcosαy=tsinα(t為參數(shù))其中α≠0(2)將直線(xiàn)的參數(shù)方程代入拋物線(xiàn)方程中有:t2sin2α-2ptcosα-2p2=0設(shè)B、C兩點(diǎn)對(duì)應(yīng)的參數(shù)為t1,t2,其中點(diǎn)P的坐標(biāo)為(x,y),則點(diǎn)P所對(duì)應(yīng)的參數(shù)為t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,當(dāng)α≠90°時(shí),應(yīng)有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α為參數(shù))消去參數(shù)得:y2=px-p2當(dāng)α=90°時(shí),P與A重合,這時(shí)P點(diǎn)的坐標(biāo)為(p,0),也是方程的解綜上,P點(diǎn)的軌跡方程為y2=px-p222.參數(shù)方程,(θ為參數(shù))表示的曲線(xiàn)是()
A.直線(xiàn)
B.圓
C.橢圓
D.拋物線(xiàn)答案:C23.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)24.給出命題:
①線(xiàn)性回歸分析就是由樣本點(diǎn)去尋找一條貼近這些點(diǎn)的直線(xiàn);
②利用樣本點(diǎn)的散點(diǎn)圖可以直觀(guān)判斷兩個(gè)變量的關(guān)系是否可以用線(xiàn)性關(guān)系表示;
③通過(guò)回歸方程=bx+a及其回歸系數(shù)b可以估計(jì)和預(yù)測(cè)變量的取值和變化趨勢(shì);
④線(xiàn)性相關(guān)關(guān)系就是兩個(gè)變量間的函數(shù)關(guān)系.其中正確的命題是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D25.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱(chēng)命題,否定時(shí)將量詞對(duì)任意的x∈R變?yōu)榇嬖趯?shí)數(shù)x,再將不等號(hào)≥變?yōu)椋技纯桑蕿椋捍嬖趯?shí)數(shù)x,使得x<2.26.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.27.設(shè)向量a,b,c滿(mǎn)足a+b+c=0,a⊥b,且a,b的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則c的模為_(kāi)_____.答案:∵向量a,b,c滿(mǎn)足a+b+c=0,a⊥b,∴向量a,b,c構(gòu)成一個(gè)直角三角形,如圖∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故為:5.28.如圖,在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若AP=λa+μb,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線(xiàn),作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比S平行四邊形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線(xiàn),作平行四邊形ANPM,∵得AP=27AB+47AC,∴S平行四邊形ANPMS平行四邊形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;29.過(guò)直線(xiàn)x+y-22=0上點(diǎn)P作圓x2+y2=1的兩條切線(xiàn),若兩條切線(xiàn)的夾角是60°,則點(diǎn)P的坐標(biāo)是______.答案:根據(jù)題意畫(huà)出相應(yīng)的圖形,如圖所示:直線(xiàn)PA和PB為過(guò)點(diǎn)P的兩條切線(xiàn),且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線(xiàn)x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)30.如圖是《集合》一章的知識(shí)結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()
A.“集合”的下位
B.“概念”的下位
C.“表示”的下位
D.“基本運(yùn)算”的下位
答案:D31.已知直線(xiàn)過(guò)點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線(xiàn)
B.|x|=2是l的方程
C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C32.不等式|x+3|-|x-1|≤a2-3a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A33.若a、b是直線(xiàn),α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個(gè)余弦值為_(kāi)_____.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個(gè)余弦值為1225故為122534.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1035.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()
A.橢圓
B.AB所在直線(xiàn)
C.線(xiàn)段AB
D.無(wú)軌跡答案:C36.命題“梯形的兩對(duì)角線(xiàn)互相不平分”的命題形式為()A.p或qB.p且qC.非pD.簡(jiǎn)單命題答案:記命題p:梯形的兩對(duì)角線(xiàn)互相平分,
而原命題是“梯形的兩對(duì)角線(xiàn)互相不平分”,是命題p的否定形式
故選C37.若集合S={a,b,c}(a、b、c∈R)中三個(gè)元素為邊可構(gòu)成一個(gè)三角形,那么該三角形一定不可能是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰三角形答案:D38.將參加數(shù)學(xué)競(jìng)賽的1000名學(xué)生編號(hào)如下:0001,0002,0003,…,1000,打算從中抽取一個(gè)容量為50的樣本,按系統(tǒng)抽樣的辦法分成50個(gè)部分.如果第一部分編號(hào)為0001,0002,…,0020,從中隨機(jī)抽取一個(gè)號(hào)碼為0015,則第40個(gè)號(hào)碼為_(kāi)_____.答案:∵系統(tǒng)抽樣是先將總體按樣本容量分成k=Nn段,再間隔k取一個(gè).又∵現(xiàn)在總體的個(gè)體數(shù)為1000,樣本容量為50,∴k=20∴若第一個(gè)號(hào)碼為0015,則第40個(gè)號(hào)碼為0015+20×39=0795故為079539.已知圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,在下列說(shuō)法中:
①對(duì)于任意的θ,圓C1與圓C2始終相切;
②對(duì)于任意的θ,圓C1與圓C2始終有四條公切線(xiàn);
③當(dāng)θ=π6時(shí),圓C1被直線(xiàn)l:3x-y-1=0截得的弦長(zhǎng)為3;
④P,Q分別為圓C1與圓C2上的動(dòng)點(diǎn),則|PQ|的最大值為4.
其中正確命題的序號(hào)為
______.答案:①由圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,得到圓C1的圓心(2cosθ,2sinθ),半徑R=1;圓C2的圓心(0,0),半徑r=1,則兩圓心之間的距離d=(2cosθ)2+(2sinθ)2=2,而R+r=1+1=2,所以?xún)蓤A的位置關(guān)系是外切,此正確;②由①得兩圓外切,所以公切線(xiàn)的條數(shù)是3條,所以此錯(cuò)誤;③把θ=π6代入圓C1:(x-2cosθ)2+(y-2sinθ)2=1得:(x-3)2+(y-1)2=1,圓心(3,1)到直線(xiàn)l的距離d=|3-2|3+1=12,則圓被直線(xiàn)l截得的弦長(zhǎng)=21-(12)2=3,所以此正確;④由兩圓外切得到|PQ|=2+2=4,此正確.綜上,正確的序號(hào)為:①③④.故為:①③④40.如圖所示,圖中線(xiàn)條構(gòu)成的所有矩形中(由6個(gè)小的正方形組成),其中為正方形的概率為
______.答案:它的長(zhǎng)有10種取法,由長(zhǎng)與寬的對(duì)稱(chēng)性,得到它的寬也有10種取法;因?yàn)?,長(zhǎng)與寬相互獨(dú)立,所以得到長(zhǎng)X寬的個(gè)數(shù)有:10X10=100個(gè)即總的矩形的個(gè)數(shù)有:100個(gè)長(zhǎng)=寬的個(gè)數(shù)為:(1X1的正方形的個(gè)數(shù))+(2X2的正方形個(gè)數(shù))+(3X3的正方形個(gè)數(shù))+(4X4的正方形個(gè)數(shù))=16+9+4+1=30個(gè)即正方形的個(gè)數(shù)有:30個(gè)所以為正方形的概率是30100=0.3故為0.341.已知向量OA=(2,3),OB=(4,-1),P是線(xiàn)段AB的中點(diǎn),則P點(diǎn)的坐標(biāo)是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由線(xiàn)段的中點(diǎn)公式可得OP=12(OA+OB)=(3,1),故P點(diǎn)的坐標(biāo)是(3,1),故選B.42.已知矩陣M=2a21,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P'(-4,0)
(1)求實(shí)數(shù)a的值;
(2)求矩陣M的特征值及其對(duì)應(yīng)的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項(xiàng)式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當(dāng)λ=-1時(shí),(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個(gè)特征向量為1-1;當(dāng)λ=4時(shí),(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個(gè)特征向量為32.43.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是(
)
A.4
B.-4
C.-5
D.6答案:A44.設(shè)四邊形ABCD中,有且,則這個(gè)四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C45.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題,則x的取值范圍是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題則它的否命題為真命題即{x|x<2或x>5}且{x|1≤x≤4}是真命題所以的取值范圍是[1,2),故為[1,2).46.如右圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個(gè)分類(lèi)和分步綜合的題目,根據(jù)題意可分類(lèi)求第一類(lèi)用三種顏色著色,由乘法原理C14C41
C12=24種方法;第二類(lèi),用四種顏色著色,由乘法原理有2C14C41
C12
C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.47.如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對(duì)累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿(mǎn)足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿(mǎn)足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿(mǎn)足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿(mǎn)足條件,執(zhí)行S=1+2×15=31,此時(shí)31是要輸出的S值,說(shuō)明i不滿(mǎn)足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.48.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標(biāo),和圓C關(guān)于直線(xiàn)x-y=0對(duì)稱(chēng)的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))
即
(x-3)2+(y+2)2=16,表示圓心坐標(biāo)(3,-2),半徑等于4的圓.C(3,-2)關(guān)于直線(xiàn)x-y=0對(duì)稱(chēng)的點(diǎn)C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.49.設(shè)復(fù)數(shù)z滿(mǎn)足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為450.已知向量,,,則(
)A.B.C.5D.25答案:C解析:將平方即可求得C.第3卷一.綜合題(共50題)1.將3封信投入5個(gè)郵筒,不同的投法共有()
A.15
種
B.35
種
C.6
種
D.53種答案:D2.已知直線(xiàn)ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長(zhǎng)的三角形()
A.是銳角三角形
B.是鈍角三角形
C.是直角三角形
D.不存在答案:C3.盒中裝有形狀、大小完全相同的5個(gè)球,其中紅色球3個(gè),黃色球2個(gè).若從中隨機(jī)取出2個(gè)球,則所取出的2個(gè)球顏色不同的概率等于______.答案:從中隨機(jī)取出2個(gè)球,每個(gè)球被取到的可能性相同,是古典概型從中隨機(jī)取出2個(gè)球,所有的取法共有C52=10所取出的2個(gè)球顏色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故為354.已知x,y的取值如下表所示:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線(xiàn)性相關(guān),且y^=0.95x+a,以此預(yù)測(cè)當(dāng)x=2時(shí),y=______.答案:∵從所給的數(shù)據(jù)可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴這組數(shù)據(jù)的樣本中心點(diǎn)是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴線(xiàn)性回歸方程是y=0.95x+2.6,∴預(yù)測(cè)當(dāng)x=2時(shí),y=0.95×2+2.6=4.5故為:4.55.某計(jì)算機(jī)程序每運(yùn)行一次都隨機(jī)出現(xiàn)一個(gè)五位的二進(jìn)制數(shù)A=
,其中A的各位數(shù)中,a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為,出現(xiàn)1的概率為.記ξ=a1+a2+a3+a4+a5,當(dāng)程序運(yùn)行一次時(shí),ξ的數(shù)學(xué)期望Eξ=()
A.
B.
C.
D.答案:C6.過(guò)點(diǎn)(0,2)且與圓x2+y2=4只有一個(gè)交點(diǎn)的直線(xiàn)方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(diǎn)(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(diǎn)(0,2)在圓x2+y2=4上,∴過(guò)點(diǎn)(0,2)且與圓x2+y2=4只有一個(gè)交點(diǎn)的直線(xiàn)方程是0x+2y=4,即y=2.故為:y=2.7.某個(gè)命題與正整數(shù)n有關(guān),如果當(dāng)n=k(k∈N+)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)命題也成立.
現(xiàn)已知當(dāng)n=7時(shí)該命題不成立,那么可推得()
A.當(dāng)n=6時(shí)該命題不成立
B.當(dāng)n=6時(shí)該命題成立
C.當(dāng)n=8時(shí)該命題不成立
D.當(dāng)n=8時(shí)該命題成立答案:A8.書(shū)架上有5本數(shù)學(xué)書(shū),4本物理書(shū),5本化學(xué)書(shū),從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書(shū)架上有5本數(shù)學(xué)書(shū),4本物理書(shū),5本化學(xué)書(shū),∴從中任取一本,不同的取法有5+4+5=14種故選A.9.下列集合中,不同于另外三個(gè)集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對(duì)于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個(gè)元素,即方程“x=0”.故選D.10.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對(duì)其中6題,乙能答對(duì)其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測(cè)試,至少答對(duì)2題算合格.
(1)分別求甲、乙兩人考試合格的概率;
(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨(dú)立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.11.直線(xiàn)y=3x+1的斜率是()A.1B.2C.3D.4答案:因?yàn)橹本€(xiàn)y=3x+1是直線(xiàn)的斜截式方程,所以直線(xiàn)的斜率是3.故選C.12.曲線(xiàn)C:x=t-2y=1t+1(t為參數(shù))的對(duì)稱(chēng)中心坐標(biāo)是______.答案:曲線(xiàn)C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對(duì)稱(chēng)中心為(-2,1).故為:(-2,1).13.在直角坐標(biāo)系中,畫(huà)出下列向量:
(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;
(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;
(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)14.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.極差答案:C15.已知,,那么P(B|A)等于()
A.
B.
C.
D.答案:B16.已知實(shí)數(shù)x,y滿(mǎn)足3x+4y+10=0,那么x2+y2的最小值為_(kāi)_____.答案:設(shè)P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線(xiàn)3x+4y+10=0上的點(diǎn)P到原點(diǎn)的距離的最小值.則根據(jù)點(diǎn)到直線(xiàn)的距離公式得點(diǎn)P到直線(xiàn)3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.17.不等式x+x3≥0的解集是(
)。答案:{x|x≥0}18.若|a|=3、|b|=4,且a⊥b,則|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故為:5.19.某校有老師300人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本,已知從女學(xué)生中抽取的人數(shù)為80,則n=()
A.171
B.184
C.200
D.392答案:C20.若k∈R,則“k>3”是“方程表示雙曲線(xiàn)”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:A21.極坐標(biāo)方程ρcos2θ=0表示的曲線(xiàn)為()
A.極點(diǎn)
B.極軸
C.一條直線(xiàn)
D.兩條相交直線(xiàn)答案:D22.已知向量a=(1,2),b=(2,-3).若向量c滿(mǎn)足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.
①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.
②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).23.過(guò)直線(xiàn)x+y-22=0上點(diǎn)P作圓x2+y2=1的兩條切線(xiàn),若兩條切線(xiàn)的夾角是60°,則點(diǎn)P的坐標(biāo)是______.答案:根據(jù)題意畫(huà)出相應(yīng)的圖形,如圖所示:直線(xiàn)PA和PB為過(guò)點(diǎn)P的兩條切線(xiàn),且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線(xiàn)x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)24.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.
(1)求A1C與DB所成角的大小;
(2)求二面角D-A1B-C的余弦值;
(3)若點(diǎn)E在A(yíng)1B上,且EB=1,求EC與平面ABCD所成角的大?。鸢福海?)如圖建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個(gè)法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個(gè)法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.25.下面的結(jié)構(gòu)圖,總經(jīng)理的直接下屬是()
A.總工程師和專(zhuān)家辦公室
B.開(kāi)發(fā)部
C.總工程師、專(zhuān)家辦公室和開(kāi)發(fā)部
D.總工程師、專(zhuān)家辦公室和所有七個(gè)部答案:C26.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(
)
A.
B.
C.
D.答案:B27.函數(shù)y=()|x|的圖象是()
A.
B.
C.
D.
答案:B28.“因?yàn)閷?duì)數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對(duì)數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯(cuò)誤是()
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)
D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò)答案:A29.已知焦點(diǎn)在x軸上的雙曲線(xiàn)漸近線(xiàn)方程是y=±4x,則該雙曲線(xiàn)的離心率是()
A.
B.
C.
D.答案:A30.求證:菱形各邊中點(diǎn)在以對(duì)角線(xiàn)的交點(diǎn)為圓心的同一個(gè)圓上.答案:已知:如圖,菱形ABCD的對(duì)角線(xiàn)AC和BD相交于點(diǎn)O.求證:菱形ABCD各邊中點(diǎn)M、N、P、Q在以O(shè)為圓心的同一個(gè)圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點(diǎn),∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點(diǎn)在以O(shè)為圓心OM為半徑的圓上.所以菱形各邊中點(diǎn)在以對(duì)角線(xiàn)的交點(diǎn)為圓心的同一個(gè)圓上.31.把方程化為以參數(shù)的參數(shù)方程是(
)A.B.C.D.答案:D解析:,取非零實(shí)數(shù),而A,B,C中的的范圍有各自的限制32.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯(cuò),輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.33.平面內(nèi)有兩定點(diǎn)A、B及動(dòng)點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓”,那么()A.甲是乙成立的充分不必要條件B.甲是乙成立的必要不充分條件C.甲是乙成立的充要條件D.甲是乙成立的非充分非必要條件答案:命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓∵當(dāng)一個(gè)動(dòng)點(diǎn)到兩個(gè)頂點(diǎn)距離之和等于定值時(shí),再加上這個(gè)和大于兩個(gè)定點(diǎn)之間的距離,可以得到動(dòng)點(diǎn)的軌跡是橢圓,沒(méi)有加上的條件不一定推出,而點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓,一定能夠推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分條件故選B.34.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:135.下圖是由A、B、C、D中的哪個(gè)平面圖旋轉(zhuǎn)而得到的(
)答案:A36.設(shè)拋物線(xiàn)y2=8x上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線(xiàn)焦點(diǎn)的距離是()A.4B.6C.8D.12答案:拋物線(xiàn)y2=8x的準(zhǔn)線(xiàn)為x=-2,∵點(diǎn)P到y(tǒng)軸的距離是4,∴到準(zhǔn)線(xiàn)的距離是4+2=6,根據(jù)拋物線(xiàn)的定義可知點(diǎn)P到該拋物線(xiàn)焦點(diǎn)的距離是6故選B37.雙曲線(xiàn)x2a2-y2b2=1,(a>0,b>0)的一條漸近線(xiàn)方程是y=3x,坐標(biāo)原點(diǎn)到直線(xiàn)AB的距離為32,其中A(a,0),B(0,-b).
(1)求雙曲線(xiàn)的方程;
(2)若B1是雙曲線(xiàn)虛軸在y軸正半軸上的端點(diǎn),過(guò)點(diǎn)B作直線(xiàn)交雙曲線(xiàn)于點(diǎn)M,N,求B1M⊥B1N時(shí),直線(xiàn)MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設(shè)直線(xiàn)AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線(xiàn)方程為:x23-y29=1.(2)∵雙曲線(xiàn)方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設(shè)P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設(shè)M(x1,y1),N(x2,y2)∴設(shè)直線(xiàn)l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3
y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3
y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)
B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件公司總經(jīng)理聘任合同
- 河道整治自卸車(chē)租賃協(xié)議
- 政府機(jī)構(gòu)租賃合同-政府
- 垃圾處理保溫系統(tǒng)安裝協(xié)議
- 高空水電站設(shè)備維護(hù)合同
- 資產(chǎn)轉(zhuǎn)讓協(xié)議三篇
- 芹菜收購(gòu)合同范本(2篇)
- 公交車(chē)廣告違約終止合同通知書(shū)
- 集體合同培訓(xùn)材料
- 煙酒貨物運(yùn)輸合同范例
- 循環(huán)流化床鍋爐DCS控制方案
- 大眾頂級(jí) 輝騰 減振控制的空氣懸架_圖文
- 血液透析專(zhuān)科操作流程及評(píng)分標(biāo)準(zhǔn)
- 電工新技術(shù)介紹(課堂PPT)
- 座板式單人吊具(課堂PPT)
- 托班一日生活情況反饋表
- FLAC3D常用命令
- JGJ_T231-2021建筑施工承插型盤(pán)扣式鋼管腳手架安全技術(shù)標(biāo)準(zhǔn)(高清-最新版)
- 畢業(yè)論文(設(shè)計(jì))除雪車(chē)工作裝置設(shè)計(jì)
- 鏡片加工知識(shí)之四研磨
- 核電站1E級(jí)電氣設(shè)備鑒定標(biāo)準(zhǔn)技術(shù)經(jīng)驗(yàn)
評(píng)論
0/150
提交評(píng)論