2023年茂名職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年茂名職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年茂名職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年茂名職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年茂名職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年茂名職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若矩陣A=是表示我校2011屆學生高二上學期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分數(shù).若經(jīng)過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分數(shù),那么他應把努力方向主要放在哪一門學科上()

A.語文

B.數(shù)學

C.外語

D.都一樣答案:B2.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點F且斜率為k(k>0)的直線與C相交于A、B兩點,若AF=3FB,則k=______.答案:設l為橢圓的右準線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.3.設雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(a,0),(0,b)兩點,已知原點到直線l的距離為34c,則雙曲線的離心率為______.答案:∵直線l過(a,0),(0,b)兩點,∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.4.某次我市高三教學質(zhì)量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項是()

A.甲科總體的標準差最小

B.丙科總體的平均數(shù)最小

C.乙科總體的標準差及平均數(shù)都居中

D.甲、乙、丙的總體的平均數(shù)不相同

答案:A5.設x,y∈R,且滿足x2+y2=1,求x+y的最大值為()

A.

B.

C.2

D.1答案:A6.已知復數(shù)a+bi,其中a,b為0,1,2,…,9這10個數(shù)字中的兩個不同的數(shù),則不同的虛數(shù)的個數(shù)為()A.36B.72C.81D.90答案:當a取0時,b有9種取法,當a不取0時,a有9種取法,b不能取0和a取的數(shù),故b有8種取法,∴組成不同的虛數(shù)個數(shù)為9+9×8=81種,故選C.7.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.8.下列在曲線上的點是()

A.

B.

C.

D.答案:D9.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24010.用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,假設正確的是()

A.假設三內(nèi)角都不大于60度

B.假設三內(nèi)角都大于60度

C.假設三內(nèi)角至多有一個大于60度

D.假設三內(nèi)角至多有兩個大于60度答案:B11.如圖,AB,AC分別是⊙O的切線和割線,且∠C=45°,∠BDA=60°,CD=6,則切線AB的長是______.答案:過點A作AM⊥BD與點M.∵AB為圓O的切線∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.12.2010年廣州亞運會乒乓球男單決賽中,馬龍與王皓在前三局的比分分別是9:11、11:8、11:7,已知馬琳與王皓的水平相當,比賽實行“七局四勝”制,即先贏四局者勝,求(1)王皓獲勝的概率;

(2)比賽打滿七局的概率.(3)記比賽結(jié)束時的比賽局數(shù)為ξ,求ξ的分布列及數(shù)學期望.答案:(1)在馬龍先前三局贏兩局的情況下,王皓取勝有兩種情況.第一種是王皓連勝三局;第二種是在第四到第六局,王皓贏了兩局,第七局王皓贏.在第一種情況下王皓取勝的概率為(12)3=18;在第二種情況下王皓取勝的概率為為C23(12)3×12=316,王皓獲勝的概率18+316=516;(3分)(2)比賽打滿七局有兩種結(jié)果:馬龍勝或王皓勝.記“比賽打滿七局,馬龍勝”為事件A,則P(A)=C13(12)3×12=316;記“比賽打滿七局,王皓勝”為事件B,則P(B)=C23(12)3×12=316;因為事件A、B互斥,所以比賽打滿七局的概率為P(A)+P(B)=38.(7分)(3)比賽結(jié)束時,比賽的局數(shù)為5,6,7,則打完五局馬龍獲勝的概率為12×12=14;打完六局馬琳獲勝的概率為C12(12)2×12=14,王皓取勝的概率為(12)3=18;比賽打滿七局,馬龍獲勝的概率為C13(12)3×12=316,王皓取勝的概率為為C23(12)3×12=316;所以ξ的分布列為ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)13.一位運動員投擲鉛球的成績是14m,當鉛球運行的水平距離是6m時,達到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D14.方程ax2+2x+1=0至少有一個負的實根的充要條件是()

A.0<a≤1

B.a(chǎn)<1

C.a(chǎn)≤1

D.0<a≤1或a<0答案:C15.用數(shù)學歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時,第一步驗證n=1時,左邊應取的項是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當n=1時,n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時,等式左邊的項為:1+2+3+4故為:1+2+3+416.一射手對靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()

A.2.44

B.3.376

C.2.376

D.2.4答案:C17.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導致接收信息出錯,則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項正確;B選項原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項正確;C選項原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項錯誤;D選項原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項正確;故選C.18.對某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:

花期(天)11~1314~1617~1920~22個數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:1619.已知向量a與b的夾角為π3,|a|=2,則a在b方向上的投影為______.答案:由投影的定義可得:a在b方向上的投影為:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故為:2220.六個不同大小的數(shù)按如圖形式隨機排列,設第一行這個數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個數(shù)______.答案:首先M3一定是6個數(shù)中最大的,設這六個數(shù)分別為a,b,c,d,e,f,不妨設a>b>c>d>e>f.因為如果a在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時無法滿足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一個,否則,若M2是e,則第二行另一個數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當M2是b時,此時,a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31

C21

A44=144(種),當M2是c時,此時a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32

C21

A33=72(種),當M2是d時,此時,a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33

C21

A22=24(種),故滿足M1<M2<M3所有排列的個數(shù)為:24+72+144=240種,故為:240.21.設向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:222.拋物線y2=4x上一點M與該拋物線的焦點F的距離|MF|=4,則點M的橫坐標x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.23.已知變量a,b已被賦值,要交換a、b的值,應采用的算法是()

A.a(chǎn)=b,b=a

B.a(chǎn)=c,b=a,c=b

C.a(chǎn)=c,b=a,c=a

D.c=a,a=b,b=c答案:D24.方程4x-3×2x+2=0的根的個數(shù)是(

A.0

B.1

C.2

D.3答案:C25.已知G是△ABC的重心,過G的一條直線交AB、AC兩點分別于E、F,且有AE=λAB,AF=μAC,則1λ+1μ=______.答案:∵G是△ABC的重心∴取過G平行BC的直線EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故為326.已知△ABC和點M滿足.若存在實數(shù)使得成立,則m=()

A.2

B.3

C.4

D.5答案:B27.設是定義在正整數(shù)集上的函數(shù),且滿足:“當成立時,總可推出成立”.那么,下列命題總成立的是A.若成立,則當時,均有成立B.若成立,則當時,均有成立C.若成立,則當時,均有成立D.若成立,則當時,均有成立答案:D解析:若成立,依題意則應有當時,均有成立,故A不成立,若成立,依題意則應有當時,均有成立,故B不成立,因命題“當成立時,總可推出成立”.“當成立時,總可推出成立”.因而若成立,則當時,均有成立,故C也不成立。對于D,事實上,依題意知當時,均有成立,故D成立。28.如圖所示,設k1,k2,k3分別是直線l1,l2,l3的斜率,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C29.有以下四個結(jié)論:

①lg(lg10)=0;

②lg(lne)=0;

③若e=lnx,則x=e2;

④ln(lg1)=0.

其中正確的是()

A.①②

B.①②③

C.①②④

D.②③④答案:A30.求證:三個兩兩垂直的平面的交線兩兩垂直.答案:設三個互相垂直的平面分別為α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三個平面的公共點為O,如圖所示:在平面γ內(nèi),除點O外,任意取一點M,且點M不在這三個平面中的任何一個平面內(nèi),過點M作MN⊥c,MP⊥b,M、P為垂足,則有平面和平面垂直的性質(zhì)可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.

再由b、c在平面γ內(nèi),可得a⊥b,a⊥c.同理可證,c⊥b,c⊥a,從而證得a、b、c互相垂直.31.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(1)求證:圓心O在直線AD上.

(2)求證:點C是線段GD的中點.答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點C是線段GD的中點.(10分)32.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.33.如圖程序框圖箭頭a指向①處時,輸出

s=______.箭頭a指向②處時,輸出

s=______.答案:程序在運行過程中各變量的情況如下表所示:(1)當箭頭a指向①時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

2

3第三圈

3

4第四圈

4

5第五圈

5

6第六圈

否故最終輸出的S值為5,即m=5;(2)當箭頭a指向②時,是否繼續(xù)循環(huán)

S

i循環(huán)前/0

1第一圈

1

2第二圈

1+2

3第三圈

1+2+3

4第四圈

1+2+3+4

5第五圈

1+2+3+4+5

6第六圈

否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.34.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應.∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.35.使關(guān)于的不等式有解的實數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。36.已知點P1的球坐標是P1(4,,),P2的柱坐標是P2(2,,1),則|P1P2|=()

A.

B.

C.

D.4答案:A37.已知向量=(1,2),=(2,x),且=-1,則x的值等于()

A.

B.

C.

D.答案:D38.已知點(3,1)和(-4,6)在直線3x-2y+a=0的兩側(cè),則實數(shù)a的取值范圍是(

A.a<-7或a>24

B.a=7或a=24

C.-7<a<24

D.-24<a<7答案:C39.直線3x+5y-1=0與4x+3y-5=0的交點是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C40.如圖程序框圖表達式中N=______.答案:該程序按如下步驟運行①N=1×2,此時i變成3,滿足i≤5,進入下一步循環(huán);②N=1×2×3,此時i變成4,滿足i≤5,進入下一步循環(huán);③N=1×2×3×4,此時i變成5,滿足i≤5,進入下一步循環(huán);④N=1×2×3×4×5,此時i變成6,不滿足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12041.如圖所示,正四面體V—ABC的高VD的中點為O,VC的中點為M.

(1)求證:AO、BO、CO兩兩垂直;

(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)

設=a,=b,=c,正四面體的棱長為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.42.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進行全排列,故有A44種結(jié)果,故選C.43.參數(shù)方程,(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C44.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()

A.30°

B.40°

C.80°

D.70°

答案:C45.在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.46.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.47.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C48.如圖,過點P作⊙O的割線PAB與切線PE,E為切點,連接AE、BE,∠APE的平分線分別與AE、BE相交于點C、D,若∠AEB=30°,則∠PCE=______.答案:如圖,PE是圓的切線,∴∠PEB=∠PAC,∵AE是∠APE的平分線,∴∠EPC=∠APC,根據(jù)三角形的外角與內(nèi)角關(guān)系有:∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,∴∠EDC=∠ECD,∴△EDC為等腰三角形,又∠AEB=30°,∴∠EDC=∠ECD=75°,即∠PCE=75°,故為:75°.49.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,則k的值為?

(2)若α∈N,又三點A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=250.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長為222-(2)2=22,故為22.第2卷一.綜合題(共50題)1.若點A的坐標為(3,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準線方程為x=-12,設點M到準線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點M的坐標是(2,2),故選D.2.一個盒子中裝有4張卡片,上面分別寫著四個函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個函數(shù)必須是一個奇函數(shù)、一個偶函數(shù).而所給的4個函數(shù)中,有2個奇函數(shù)、2個偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.3.設函數(shù)f(x)的定義域為D,如果對于任意的x1∈D,存在唯一的x2∈D,使得

f(x1)+f(x2)2=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的均值為C,現(xiàn)在給出下列4個函數(shù):①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為

2的所有函數(shù)是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調(diào)遞增,對應任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據(jù)三角函數(shù)的周期性可得,滿足sinx2=0的x2無窮多個,②錯誤③y=lgx在(0,+∞)單調(diào)遞增,對應任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時x2不存在④錯誤故選D.4.以拋物線y2=2px(p>0)的焦半徑|PF|為直徑的圓與y軸位置關(guān)系是______.答案:根據(jù)拋物線定義可知|PF|=p2,而圓的半徑為p2,圓心為(p2,0),|PF|正好等于所求圓的半徑,進而可推斷圓與y軸位置關(guān)系是相切.5.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:236.已知向量=(1,1,-2),=(2,1,),若≥0,則實數(shù)x的取值范圍為()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C7.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于

A.2

B.

C.4

D.答案:A8.如圖,圓心角∠AOB=120°,P是AB上任一點(不與A,B重合),點C在AP的延長線上,則∠BPC等于______.

答案:解:設點E是優(yōu)弧AB(不與A、B重合)上的一點,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.9.若kxy-8x+9y-12=0表示兩條直線,則實數(shù)k的值及兩直線所成的角分別是()

A.8,60°

B.4,45°

C.6,90°

D.2,30°答案:C10.把平面上一切單位向量歸結(jié)到共同的起點,那么這些向量的終點所構(gòu)成的圖形是

______.答案:把平面上一切單位向量歸結(jié)到共同的起點,那么這些向量的終點到起點的距離都等于1,所以,由圓的定義得,這些向量的終點所構(gòu)成的圖形是半徑為1的圓.11.方程組的解集是[

]A.{5,1}

B.{1,5}

C.{(5,1)}

D.{(1,5)}答案:C12.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,設OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.13.過拋物線y=ax2(a>0)的焦點F作一直線交拋物線交于P、Q兩點,若線段PF、FQ的長分別為p、q,則1p+1q=______.答案:設PQ的斜率k=0,因拋物線焦點坐標為(0,14a),把直線方程y=14a

代入拋物線方程得x=±12a,∴PF=FQ=12a,從而

1p+1q=2a+2a=4a,故為:4a.14.在空間中,有如下命題:

①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;

②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;

③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.

其中正確命題的個數(shù)為()個.

A.0

B.1

C.2

D.3答案:B15.使方程

mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是()A.m=n=r=2B.m2+n2≠0,且r≠1C.mn>0,且r≠1D.mn<0,且r≠1答案:mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是m2+n2≠0,且m2m=n2n≠rr+1,即m2+n2≠0,且r≠1,故選B.16.寫出按從小到大的順序重新排列x,y,z三個數(shù)值的算法.答案:算法如下:(1).輸入x,y,z三個數(shù)值;(2).從三個數(shù)值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結(jié)果.17.已知a>b>0,則3a,3b,4a由小到大的順序是______.答案:由于指數(shù)函數(shù)y=3x在R上是增函數(shù),且a>b>0,可得3a>3b.由于冪函數(shù)y=xa在(0,+∞)上是增函數(shù),故有3a<4a,故3a,3b,4a由小到大的順序是3b<3a<4a.,故為3b<3a<4a.18.函數(shù)y=2x的值域為______.答案:因為:x≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域為:[1,+∞).故為:[1,+∞).19.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.20.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復數(shù)z2+i的虛部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實數(shù)a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8321.(1+3x)n(其中n∈N且n≥6)的展開式中x5與x6的系數(shù)相等,則n=()A.6B.7C.8D.9答案:二項式展開式的通項為Tr+1=3rCnrxr∴展開式中x5與x6的系數(shù)分別是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故選B22.如果一個圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個圓錐的表面積是12×2π×2+π?12=3π.故:3π.23.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B24.正十邊形的一個內(nèi)角是多少度?答案:由多邊形內(nèi)角和公式180°(n-2),∴每一個內(nèi)角的度數(shù)是180°(n-2)n當n=10時.得到一個內(nèi)角為180°(10-2)10=144°25.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機剔除的個體數(shù)分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A26.設非零向量、、滿足||=||=||,+=,則<,>=()

A.150°

B.120°

C.60°

D.30°答案:B27.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(x,y)到(4,0),(-4,0)兩點距離差的絕對值為6,∴軌跡為以(4,0),(-4,0)為焦點的雙曲線,方程為x29-y27=1∴a2-b2=2故為:228.(幾何證明選講選做題)如圖,△ABC的外角平分線AD交外接圓于D,BD=4,則CD=______.答案:∵A、B、C、D共圓,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故為4.29.命題“存在實數(shù)x,,使x>1”的否定是()

A.對任意實數(shù)x,都有x>1

B.不存在實數(shù)x,使x≤1

C.對任意實數(shù)x,都有x≤1

D.存在實數(shù)x,使x≤1答案:C30.一個家庭有兩個小孩,假設生男生女是等可能的,已知這個家庭有一個是女孩的條件下,這時另一個也是女孩的概率是()

A.

B.

C.

D.答案:D31.在某項體育比賽中,七位裁判為一選手打出分數(shù)的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評委為該選手打出的7個分數(shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個最低分89,去掉一個最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.32.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個頂點分別在四條直線上,則正方形的面積為()

A.4h2

B.5h2

C.4h2

D.5h2

答案:B33.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.34.一個底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.35.已知a,b是非零向量,且a,b夾角為π3,則向量p=a丨a丨+b丨b丨的模為______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|

|b|cosπ3=12|a|

|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故為3.36.過點(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有()

A.1條

B.2條

C.3條

D.4條答案:B37.如圖是一個幾何體的三視圖(單位:cm),則這個幾何體的表面積是()A.(7+2)

cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:圖中的幾何體可看成是一個底面為直角梯形的直棱柱.直角梯形的上底為1,下底為2,高為1;棱柱的高為1.可求得直角梯形的四條邊的長度為1,1,2,2.所以此幾何體的表面積S表面=2S底+S側(cè)面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故選A.38.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.

(1)相似三角形的對應角相等;

(2)當a>1時,函數(shù)y=ax是增函數(shù).答案:(1)若兩個三角形相似,則它們的對應角相等.條件p:三角形相似,結(jié)論q:對應角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).39.某學校三個社團的人員分布如下表(每名同學只參加一個社團):

聲樂社排球社武術(shù)社高一4530a高二151020學校要對這三個社團的活動效果里等抽樣調(diào)查,按分層抽樣的方法從社團成員中抽取30人,結(jié)果聲樂社被抽出12人,則a=______.答案:根據(jù)分層抽樣的定義和方法可得,1245+15=30120+a,解得a=30,故為3040.下面為一個求20個數(shù)的平均數(shù)的程序,在橫線上應填充的語句為()

A.i>20

B.i<20

C.i>=20

D.i<=20

答案:A41.已知x,y,z滿足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由題意可得P(x,y,z),在以M(3,4,0)為球心,2為半徑的球面上,x2+y2+z2表示原點與點P的距離的平方,顯然當O,P,M共線且P在O,M之間時,|OP|最小,此時|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故為:27-102.42.利用斜二測畫法能得到的()

①三角形的直觀圖是三角形;

②平行四邊形的直觀圖是平行四邊形;

③正方形的直觀圖是正方形;

④菱形的直觀圖是菱形.

A.①②

B.①

C.③④

D.①②③④答案:A43.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,抽取了總成績介于350分到650分之間的10000名學生成績,并根據(jù)這10000名學生的總成績畫了樣本的頻率分布直方圖.為了進一步分析學生的總成績與各科成績等方面的關(guān)系,要從這10000名學生中,再用分層抽樣方法抽出200人作進一步調(diào)查,則總成績在[400,500)內(nèi)共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B44.l1,l2,l3是空間三條不同的直線,則下列命題正確的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共點l1,l2,l3共面答案:B45.已知點A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()

A.

B.

C.

D.答案:D46.已知一種材料的最佳加入量在110g到210g之間.若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:171.8或148.247.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C48.已知數(shù)列{an}前n項的和為Sn,且滿足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用數(shù)學歸納法證明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設n=k(k∈N*)時結(jié)論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(jù)(1)(2)可知對任意的正整數(shù)n∈N*都成立.…(14分)49.求圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點P(3,-2)的圓的方程.答案:設圓的方程為(x-a)2+(y-b)2=r2(r>0)由題意有:b=-4a|a+b+1|2=rb+2a-3?(-1)=-1解之得a=1b=-4r=22∴所求圓的方程為(x-1)2+(y+4)2=850.已知(2x+1)3的展開式中,二項式系數(shù)和為a,各項系數(shù)和為b,則a+b=______.(用數(shù)字表示)答案:由題意可得(2x+1)3的展開式中,二項式系數(shù)和為a=23=8令x=1可得各項系數(shù)和為b=(2+1)3=27∴a+b=35故為:35第3卷一.綜合題(共50題)1.P為橢圓x225+y216=1上一點,F(xiàn)1,F(xiàn)2分別為其左,右焦點,則△PF1F2周長為______.答案:由題意知△PF1F2周長=2a+2c=10+6=16.2.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為()

A.0.9

B.0.5

C.0.6

D.0.8答案:D3.一圓形紙片的圓心為O,點Q是圓內(nèi)異于O點的一個定點,點A是圓周上一動點,把紙片折疊使得點A與點Q重合,然后抹平紙片,折痕CD與OA交于點P,當點A運動時,點P的軌跡為()

A.橢圓

B.雙曲線

C.拋物線

D.圓答案:A4.如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點D,連接AD,則∠DAC的度數(shù)為

______度.答案:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等邊三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故為:30.5.在平面直角坐標系xoy中,曲線C1的參數(shù)方程為x=4cosθy=2sinθ(θ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,得曲線C2的極坐標方程為ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;

(Ⅱ)設曲線C1與x軸的一個交點的坐標為P(m,0)(m>0),經(jīng)過點P作曲線C2的切線l,求切線l的方程.答案:(Ⅰ)曲線C1:x216+y24=1;曲線C2:(x-1)2+(y+2)2=5;(3分)曲線C1為中心是坐標原點,焦點在x軸上,長半軸長是4,短半軸長是2的橢圓;曲線C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線C1:x216+y24=1與x軸的交點坐標為(-4,0)和(4,0),因為m>0,所以點P的坐標為(4,0),(2分)顯然切線l的斜率存在,設為k,則切線l的方程為y=k(x-4),由曲線C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線l的方程為y=3±102(x-4)(3分)6.已知頂點在坐標原點,焦點在x軸上的拋物線被直線y=2x+1截得的弦長為15,求此拋物線方程.答案:由題意可設拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2

]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x7.已知二次函數(shù)f(x)=x2+bx+c,f(0)<0,則該函數(shù)零點的個數(shù)為()

A.1

B.2

C.3

D.0答案:B8.已知直角三角形兩直角邊長為a,b,求斜邊長c的一個算法分下列三步:

①計算c=a2+b2;

②輸入直角三角形兩直角邊長a,b的值;

③輸出斜邊長c的值;

其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規(guī)則得:第一步:輸入直角三角形兩直角邊長a,b的值,第二步:計算c=a2+b2,第三步:輸出斜邊長c的值;這樣一來,就是斜邊長c的一個算法.故選D.9.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當?shù)淖鴺讼?,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準線的垂線,垂足為A,以OA所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設拋物線C的焦點為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)10.設集合A={1,2},則滿足A∪B={1,2,3}的集合B的個數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個數(shù)問題,所以滿足題目條件的集合B共有22=4個.故選擇C.11.某項選拔共有四輪考核,每輪設有一個問題,能正確回答問題者進入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手進入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進入第三輪考核的概率.

(注:本小題結(jié)果可用分數(shù)表示)答案:(1)該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.12.一個盒子中裝有4張卡片,上面分別寫著四個函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個函數(shù)必須是一個奇函數(shù)、一個偶函數(shù).而所給的4個函數(shù)中,有2個奇函數(shù)、2個偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.13.用演繹法證明y=x2是增函數(shù)時的大前提是______.答案:∵證明y=x2是增函數(shù)時,依據(jù)的原理就是增函數(shù)的定義,∴用演繹法證明y=x2是增函數(shù)時的大前提是:增函數(shù)的定義故填增函數(shù)的定義14.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.15.______稱為向量;常用

______表示,記為

______,又可用小寫字線表示為

______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有帶箭頭的線段來表示,記為有向線段AB,②又可用小寫字線表示為:a,b,c…,故為:既有大小,又有方向的量;有帶箭頭的線段,有向線段AB,a,b,c….16.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.17.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是()

A.內(nèi)切

B.相交

C.外切

D.外離答案:B18.如果e1,e2是平面a內(nèi)所有向量的一組基底,那么()A.若實數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.空間任一向量可以表示為a=λ1e1+λ2e2,這里λ1,λ2∈RC.對實數(shù)λ1,λ2,λ1e1+λ2e2不一定在平面a內(nèi)D.對平面a中的任一向量a,使a=λ1e1+λ2e2的實數(shù)λ1,λ2有無數(shù)對答案:∵由基底的定義可知,e1和e2是平面上不共線的兩個向量,∴實數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0,不是空間任一向量都可以表示為a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示為a=λ1e1+λ2e2的形式,此時實數(shù)λ1,λ2有且只有一對,而對實數(shù)λ1,λ2,λ1e1+λ2e2一定在平面a內(nèi),故選A.19.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.20.柱坐標(2,,5)對應的點的直角坐標是

。答案:()解析:∵柱坐標(2,,5),且,2,∴對應直角坐標是()21.設曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點,設是關(guān)于點A的對稱點,則有,,代入曲線C的方程,得關(guān)于的方程,即可知點在曲線C1上.反過來,同樣可以證明,在曲線C1上的點關(guān)于點A的對稱點在曲線C上,因此,曲線C與C1關(guān)于點A對稱.22.某年級共有210名同學參加數(shù)學期中考試,隨機抽取10名同學成績?nèi)缦拢?/p>

成績(分)506173859094人數(shù)221212則總體標準差的點估計值為______(結(jié)果精確到0.01).答案:由題意知本題需要先做出這組數(shù)據(jù)的平均數(shù)50×2+61×2+73+2×85+90+2×9410=74.9,這組數(shù)據(jù)的總體方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴總體標準差是309.76≈17.60,故為:17.60.23.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長為222-(2)2=22,故為22.24.已知拋物線C1:x2=2py(p>0)上縱坐標為p的點到其焦點的距離為3.

(Ⅰ)求拋物線C1的方程;

(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設拋物線C1在點A,B處的切線交于點M,

(?。┣簏cM的軌跡C2的方程;

(ⅱ)若點Q為(ⅰ)中曲線C2上的動點,當直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.

…(5分)(Ⅱ)(ⅰ)設過點P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點M的軌跡C2的方程為y=2

(x<-22或x>22).…(10分)(ⅱ)設Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.

…(15分)25.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.26.直線x3+y4=1與x,y軸所圍成的三角形的周長等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長為:OA+OB+AB=3+4+5=12,故選B.27.若正四面體ABCD的棱長為1,M是AB的中點,則MC

?MD

=______.答案:在正四面體中,因為M是AB的中點,所以CM=12(CA+CB),DM=12(DA+DB),所以CM?DM=12(CA+CB)?12(DA+DB)=14(CA?DA+CB?DA+CA?DB+CB?DB)=14(1×1×cos60°+0+0+1×1×cos60°)=14×1=14.所以MC

?MD

=CM?DM=14.故為:

1

4

.28.在平面直角坐標系中,橫坐標、縱坐標均為有理數(shù)的點稱為有理點.試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過點M(2,1),則此直線不能經(jīng)過兩個有理點.答案:證明:假設此直線上有兩個有理點A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過四則運算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過兩個有理點.29.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點重合,則a的坐標是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點重合.故選C.30.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A31.把38化為二進制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗證所給的四個選項,在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過驗證知道,B中的二進制表示的數(shù)字換成十進制以后得到38,故選B.32.已知曲線C的方程是x2+y2+6ax-8ay=0,那么下列各點中不在曲線C上的是()

A.(0,0)

B.(2a,4a)

C.(3a,3a)

D.(-3a,-a)答案:B33.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.34.已知D、E、F分別是△ABC的邊BC、CA、AB的中點,且,則下列命題中正確命題的個數(shù)為(

①;

③;

A.1

B.2

C.3

D.4

答案:C35.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B36.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論