版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年濰坊職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:10202.已知a>0,b>0且a+b>2,求證:1+ba,1+ab中至少有一個小于2.答案:證明:假設(shè)1+ba,1+ab都不小于2,則1+ba≥2,1+ab≥2(6分)因為a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,這與已知a+b>2相矛盾,故假設(shè)不成立(12分)綜上1+ba,1+ab中至少有一個小于2.(14分)3.一個簡單多面體的面都是三角形,頂點數(shù)V=6,則它的面數(shù)為______個.答案:∵已知多面體的每個面有三條邊,每相鄰兩條邊重合為一條棱,∴棱數(shù)E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面體的面數(shù)F為8,棱數(shù)E為12.故為8.4.從1,2,3,4,5,6,7這七個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)的個數(shù)為()
A.432
B.288
C.216
D.108答案:C5.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時,結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設(shè)不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立6.在極坐標系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()
A.θ=0(ρ∈R)和ρcosθ=2
B.θ=(ρ∈R)和ρcosθ=2
C.θ=(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1答案:B7.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.8.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當且僅當a1=a2=…=an或b1=b2=…=bn時等號成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號當且僅當a1=a2=…=an或b1=b2=…=bn時成立.9.圓錐曲線G的一個焦點是F,與之對應(yīng)的準線是,過F作直線與G交于A、B兩點,以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線答案:設(shè)圓錐曲線過焦點F的弦為AB,過A、B分別向相應(yīng)的準線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準線的距離為d,即有r=de,橢圓的離心率
0<e<1,此時r<d,圓M與準線相離;拋物線的離心率
e=1,此時r=d,圓M與準線相切;雙曲線的離心率
e>1,此時r>d,圓M與準線相交.故為:橢圓、拋物線、雙曲線.10.若,,,則
(
)
A.
B.
C.
D.答案:A11.設(shè)點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因為點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.12.2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標準》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.
某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別PM2.5濃度
(微克/立方米)頻數(shù)(天)頻率
第一組(0,25]50.25第二組(25,50]100.5第三組(50,75]30.15第四組(75,100)20.1(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.答案:(Ⅰ)
設(shè)PM2.5的24小時平均濃度在(50,75]內(nèi)的三天記為A1,A2,A3,PM2.5的24小時平均濃度在(75,100)內(nèi)的兩天記為B1,B2.所以5天任取2天的情況有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10種.
…(4分)其中符合條件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6種.
…(6分)所以所求的概率P=610=35.
…(8分)(Ⅱ)去年該居民區(qū)PM2.5年平均濃度為:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因為40>35,所以去年該居民區(qū)PM2.5年平均濃度不符合環(huán)境空氣質(zhì)量標準,故該居民區(qū)的環(huán)境需要改進.
…(12分)13.設(shè)、、為實數(shù),,則下列四個結(jié)論中正確的是(
)A.B.C.且D.且答案:D解析:若,則,則.若,則對于二次函數(shù),由可得結(jié)論.14.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:當x=0時,(1+x)m≥1+mx;即1≥1成立,x≠0時,證:用數(shù)學(xué)歸納法證明:(?。┊攎=1時,原不等式成立;當m=2時,左邊=1+2x+x2,右邊=1+2x,因為x2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當m=k時,不等式成立,即(1+x)k≥1+kx,則當m=k+1時,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當m=k+1時,不等式也成立.綜合(?。áⅲ┲瑢σ磺姓麛?shù)m,不等式都成立.(Ⅱ)證:當n≥6,m≤n時,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當n≥6時,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當n≥6時,不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當n=1時,3≠4,等式不成立;當n=2時,32+42=52,等式成立;當n=3時,33+43+53=63,等式成立;當n=4時,34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當n=5時,同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當x=0或m=1時,原不等式中等號顯然成立,下用數(shù)學(xué)歸納法證明:當x>-1,且x≠0時,m≥2,(1+x)m>1+mx.①(?。┊攎=2時,左邊=1+2x+x2,右邊=1+2x,因為x≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當m=k(k≥2)時,不等式①成立,即(1+x)k>1+kx,則當m=k+1時,因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當m=k+1時,不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當n≥6,m≤n時,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當n≥6時,不存在滿足該等式的正整數(shù)n.下同解法1.15.已知有如下兩段程序:
問:程序1運行的結(jié)果為______.程序2運行的結(jié)果為______.
答案:程序1是計數(shù)變量i=21開始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個程序計算的結(jié)果:sum=0;程序2計數(shù)變量i=21,開始進入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開始,這個程序計算的是sum=21.故為:0;21.16.A、B、C是我軍三個炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時刻,A發(fā)現(xiàn)敵炮陣地的某信號,由于B、C比A距P更遠,因此,4秒后,B、C才同時發(fā)現(xiàn)這一信號(該信號的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.答案:以線段AB的中點為原點,正東方向為x軸的正方向建立直角坐標系,則A(3,0)
B(-3,0)
C(-5,23)依題意|PB|-|PA|=4∴P在以A、B為焦點的雙曲線的右支上.這里a=2,c=3,b2=5.其方程為
x24-y25=1
(x>0)…(3分)又|PB|=|PC|,∴P又在線段BC的垂直平分線上x-3y+7=0…(5分)由方程組x-3y+7=05x2-4y2=20解得
x=8(負值舍去)y=53即
P(8,53)…(8分)由于kAP=3,可知P在A北30°東方向.…(10分)17.在投擲兩枚硬幣的隨機試驗中,記“一枚正面朝上,一枚反面朝上”為事件A,“兩枚正面朝上”為事件B,則事件A,B()
A.既是互斥事件又是對立事件
B.是對立事件而非互斥事件
C.既非互斥事件也非對立事件
D.是互斥事件而非對立事件答案:D18.△ABC所在平面內(nèi)點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經(jīng)過△ABC的重心故選A.19.一個盒子中裝有4張卡片,上面分別寫著四個函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個函數(shù)必須是一個奇函數(shù)、一個偶函數(shù).而所給的4個函數(shù)中,有2個奇函數(shù)、2個偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.20.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.21.已知點A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點B的坐標為______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)22.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)
(1)求實數(shù)a的值;
(2)求矩陣M的特征值及其對應(yīng)的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.23.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:
甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(
4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙
(10分)乙參加更合適
(12分)24.已知點G是△ABC的重心,點P是△GBC內(nèi)一點,若,則λ+μ的取值范圍是()
A.
B.
C.
D.(1,2)答案:B25.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)26.如圖,⊙O過點B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,
.則⊙O的半徑為(
).
A.6
B.13
C.
D.答案:C解析:分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.27.在下列4個命題中,是真命題的序號為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個內(nèi)角相等.
A.①
B.①②
C.①②③
D.①②④答案:D28.圓x2+y2=1上的點到直線x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:329.回歸直線方程必定過點()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過這組數(shù)據(jù)的樣本中心點,∴線性回歸方程y=bx+a表示的直線必經(jīng)過(.x,.y).故選D.30.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標為()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A31.函數(shù)y=(12)x的值域為______.答案:因為函數(shù)y=(12)x是指數(shù)函數(shù),所以它的值域是(0,+∞).故為:(0,+∞).32.右圖程序運行后輸出的結(jié)果為()
A.3456
B.4567
C.5678
D.6789
答案:A33.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯誤是()
A.大前提錯導(dǎo)致結(jié)論錯
B.小前提錯導(dǎo)致結(jié)論錯
C.推理形式錯導(dǎo)致結(jié)論錯
D.大前提和小前提錯都導(dǎo)致結(jié)論錯答案:A34.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).35.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個底面直徑為1,高為1的圓柱底面周長是2π×12=π故側(cè)面積為1×π=π故選C36.運用三段論推理:
復(fù)數(shù)不可以比較大小,(大前提)
2010和2011都是復(fù)數(shù),(小前提)
2010和2011不可以比較大?。ńY(jié)
論)
該推理是錯誤的,產(chǎn)生錯誤的原因是______錯誤.(填“大前提”或“小前提”)答案:根據(jù)三段論推理,是由兩個前提和一個結(jié)論組成,大前提:復(fù)數(shù)不可以比較大小,是錯誤的,該推理是錯誤的,產(chǎn)生錯誤的原因是大前提錯誤.故為:大前提37.參數(shù)方程為t為參數(shù))表示的曲線是()
A.一條直線
B.兩條直線
C.一條射線
D.兩條射線答案:D38.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點,直線BP交⊙O于點Q,過Q作⊙O的切線交直線OA于點E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°39.假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個圓,其一外公切線為A1A2,切點為A1及A2令點O為連心線O1O2的中點,過O作OA⊥A1A2,由直角梯形的中位線性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.40.已知圖所示的矩形,其長為12,寬為5.在矩形內(nèi)隨同地措施1000顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為550顆.則可以估計出陰影部分的面積約為______.答案:∵矩形的長為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.41.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C42.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設(shè)A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.43.某校為了研究學(xué)生的性別和對待某一活動的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算K2=7.069,則所得到的統(tǒng)計學(xué)結(jié)論是:有()的把握認為“學(xué)生性別與支持該活動有關(guān)系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C44.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.據(jù)有關(guān)報道,2009年8月15日至8
月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.45.各項都為正數(shù)的數(shù)列{an},滿足a1=1,an+12-an2=2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2為首項為1,公差為2的等差數(shù)列,∴an2=1+(n-1)×2=2n-1,又an>0,則an=2n-1(Ⅱ)只需證:1+13+…+12n-1≤
2n-1.1當n=1時,左邊=1,右邊=1,所以命題成立.當n=2時,左邊<右邊,所以命題成立②假設(shè)n=k時命題成立,即1+13+…+12k-1≤2k-1,當n=k+1時,左邊=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)
2=2(K+1)-1.命題成立由①②可知,1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.46.4位學(xué)生與2位教師并坐合影留念,針對下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)
(1)教師必須坐在中間;
(2)教師不能坐在兩端,但要坐在一起;
(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學(xué)生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學(xué)生,有A44種坐法,2位教師坐在一起,將其看成一個整體,可以交換位置,有2種坐法,將這個“整體”插在4個學(xué)生的空位中,又由教師不能坐在兩端,則有3個空位可選,則共有2A44A31=144種坐法;(3)先排4位學(xué)生,有A44種坐法,教師不能相鄰,將其依次插在4個學(xué)生的空位中,又由教師不能坐在兩端,則有3個空位可選,有A32種坐法,則共有A44A32=144種坐法..47.拋物線y=-12x2上一點N到其焦點F的距離是3,則點N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標準方程為x2=-2y∴拋物線的焦點為F(0,-12),準線方程為y=12∵點N在拋物線上,到焦點F的距離是3,∴點N到準線y=12的距離也是3因此,點N到直線y=1的距離等于3+(1-12)=72故為:7248.用“輾轉(zhuǎn)相除法”求得和的最大公約數(shù)是(
)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)49.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長交AB于G,因為AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點,所以AC=12a+b,又E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,所以M為AC的中點,所以AM=12AC,所以AM=14a+12b.故為:14a+12b.50.已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()
A.①③
B.①②
C.③④
D.①④答案:B第2卷一.綜合題(共50題)1.已知一種材料的最佳加入量在110g到210g之間.若用0.618法安排試驗,則第一次試點的加入量可以是(
)g。答案:171.8或148.22.有50件產(chǎn)品編號從1到50,現(xiàn)在從中抽取抽取5件檢驗,用系統(tǒng)抽樣確定所抽取的編號為()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D3.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}4.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).5.以下坐標給出的點中,在曲線x=sin2θy=sinθ+cosθ上的點是()A.(12,-2)B.(2,3)C.(-34,12)D.(1,3)答案:把曲線x=sin2θy=sinθ+cosθ消去參數(shù)θ,化為普通方程為y2=1+x(-1≤x≤1),結(jié)合所給的選項,只有C中的點在曲線上,故選C.6.中心在原點,焦點在橫軸上,長軸長為4,短軸長為2,則橢圓方程是(
)
A.
B.
C.
D.答案:B7.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(
)
A.-1
B.
C.2
D.1答案:C8.已知曲線,
θ∈[0,2π)上一點P到點A(-2,0)、B(2,0)的距離之差為2,則△PAB是()
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.等腰三角形答案:C9.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設(shè)A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.10.設(shè)=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()
A.平行
B.垂直
C.相交但不垂直
D.不能確定答案:B11.若矩陣M=1101,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(x0,y0),(x,y)是所得的直線上一點,[1
1][x]=[x0][0
1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.12.已知隨機變量ξ的數(shù)學(xué)期望Eξ=0.05且η=5ξ+1,則Eη等于()
A.1.15
B.1.25
C.0.75
D.2.5答案:B13.某校選修乒乓球課程的學(xué)生中,高一年級有40名,高二年級有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生中抽取一個樣本,已知在高一年級的學(xué)生中抽取了8名,則在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為______.答案:∵高一年級有40名學(xué)生,在高一年級的學(xué)生中抽取了8名,∴每個個體被抽到的概率是
840=15∵高二年級有50名學(xué)生,∴要抽取50×15=10名學(xué)生,故為:10.14.設(shè)復(fù)數(shù)z的實部是
12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.15.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個年級的學(xué)生中隨機抽取n名學(xué)生進行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A16.復(fù)數(shù),且A+B=0,則m的值是()
A.
B.
C.-
D.2答案:C17.在統(tǒng)計中,樣本的標準差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動大小
D.最大值和最小值答案:C18.已知向量=(1,2),=(2,x),且=-1,則x的值等于()
A.
B.
C.
D.答案:D19.設(shè)是的相反向量,則下列說法一定錯誤的是()
A.∥
B.與的長度相等
C.是的相反向量
D.與一定不相等答案:D20.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學(xué)??萍夹〗M在計算機上模擬航天器變軌返回試驗,設(shè)計方案
如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為
對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標為(6,4),|AC|=25,|BC|=4.故為:25、4.21.在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1。拓展到空間,研究正四面體(四個面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是(
)。答案:3:122.已知定直線l及定點A(A不在l上),n為過點A且垂直于l的直線,設(shè)N為l上任意一點,線段AN的垂直平分線交n于B,點B關(guān)于AN的對稱點為P,求證:點P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標系,并且連結(jié)PA,PN,NB.由題意知PB垂直平分AN,且點B關(guān)于AN的對稱點為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點P符合拋物線上點的條件:到定點A的距離和到定直線l的距離相等,∴點P的軌跡為拋物線.23.某處有供水龍頭5個,調(diào)查表明每個水龍頭被打開的可能性為,隨機變量ξ表示同時被打開的水龍頭的個數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨立重復(fù)試驗中,恰好發(fā)生k次的概率.對5個水龍頭的處理可視為做5次試驗,每次試驗有2種可能結(jié)果:打開或未打開,相應(yīng)的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.24.若實數(shù)X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D25.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為
______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個等式兩邊分別平方,再相加,即可消去含θ的項,所以有(x-1)2+y2=4.26.已知直線l1,l2的夾角平分線所在直線方程為y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()
A.bx+ay+c=0
B.a(chǎn)x-by+c=0
C.bx+ay-c=0
D.bx-ay+c=0答案:A27.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與
B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.28.方程|x|-1=2y-y2表示的曲線為()A.兩個半圓B.一個圓C.半個圓D.兩個圓答案:兩邊平方整理得:(|x|-1)2=2y-y2,化簡得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,當x≥1時,方程為(x-1)2+(y-1)2=1,表示圓心為(1,1)且半徑為1的圓的右半圓;當x≤1時,方程為(x+1)2+(y-1)2=1,表示圓心為(-1,1)且半徑為1的圓的右半圓綜上所述,得方程|x|-1=2y-y2表示的曲線為為兩個半圓故選:A29.氣象意義上從春季進入夏季的標志為:“連續(xù)5天的日平均溫度均不低于22
(℃)”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進入夏季的地區(qū)有()A.0個B.1個C.2個D.3個答案:①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22,根據(jù)數(shù)據(jù)得出:甲地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)可能為:22,22,24,25,26.其連續(xù)5天的日平均溫度均不低于22.
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24.根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.則肯定進入夏季的地區(qū)有甲、乙、丙三地.故選D.30.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()
A.
B.-
C.2
D.-2答案:B31.向面積為S的△ABC內(nèi)任投一點P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因為陰影部分的面積是整個三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.32.點M(4,)化成直角坐標為()
A.(2,)
B.(-2,-)
C.(,2)
D.(-,-2)答案:B33.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則
f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.34.直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(
)
A.-3
B.2
C.-3或2
D.3或-2答案:A35.判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域為R,故A錯誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域為R,g(x)的定義域為:{x|x≥0},故D錯誤;故選B.36.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實數(shù)x+y的值______.答案:因為集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.37.一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點M,拉一條繩子,繞圓臺的側(cè)面一周轉(zhuǎn)到B點,則這條繩子最短長為______cm.答案:畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,且設(shè)扇形的圓心為O.有圖得:所求的最短距離是MB',設(shè)OA=R,圓心角是α,則由題意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.38.已知向量與的夾角為120°,若向量,且,則=()
A.2
B.
C.
D.答案:C39.在平面直角坐標系xOy中,若拋物線C:x2=2py(p>0)的焦點為F(q,1),則p+q=______.答案:拋物線C:x2=2py(p>0)的焦點坐標為(0,p2),又已知焦點為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.40.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標,和圓C關(guān)于直線x-y=0對稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))
即
(x-3)2+(y+2)2=16,表示圓心坐標(3,-2),半徑等于4的圓.C(3,-2)關(guān)于直線x-y=0對稱的點C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.41.由9個正數(shù)組成的矩陣
中,每行中的三個數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個數(shù)之和等于9,則a22≥1.其中正確的個數(shù)有()
A.1個
B.2個
C.3個
D.4個答案:B42.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2
012”時,一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要條件.故選A.43.3科老師都布置了作業(yè),在同一時刻4名學(xué)生都做作業(yè)的可能情況有()
A.43種
B.4×3×2種
C.34種
D.1×2×3種答案:C44.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()
(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;
(2)可以用多個數(shù)值來刻畫數(shù)據(jù)的離散程度;
(3)對于不同的數(shù)據(jù)集,其離散程度大時,該數(shù)值應(yīng)越?。?/p>
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C45.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號與不等號的關(guān)系。46.(x+1)4的展開式中x2的系數(shù)為()A.4B.6C.10D.20答案:(x+1)4的展開式的通項為Tr+1=C4rxr令r=2得T3=C42x2=6x∴展開式中x2的系數(shù)為6故選項為B47.已知在一場比賽中,甲運動員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進行一場比賽,則甲取得一勝一負的概率是______.答案:根據(jù)題意,甲取得一勝一負包含兩種情況,甲勝乙負丙,概率為:0.8×0.3=0.24;甲勝丙負乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負的概率為0.24+0.14=0.38故為0.3848.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為
______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡得1+loga2=0,解得a=12故為:1249.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運算性質(zhì)一定成立的所有序號是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.50.設(shè),,,則P,Q,R的大小順序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B第3卷一.綜合題(共50題)1.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關(guān)系是______.答案:∵圓x2+y2-6x+4y+12=0化成標準形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關(guān)系是內(nèi)切故為:內(nèi)切2.已知單位向量a,b的夾角為,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B3.對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in)
(n是不小于2的正整數(shù)),對于任意p,q∈1,2,3,…,n,當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于______.答案:由題意知當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,在數(shù)組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對逆序數(shù)對,故為:4.4.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(
)。答案:圓,雙曲線5.計算機的程序設(shè)計語言很多,但各種程序語言都包含下列基本的算法語句:______,______,______,______,______.答案:計算機的程序設(shè)計語言很多,但各種程序語言都包含下列基本的算法語句:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.故為:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.6.已知l1、l2是過點P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個交點,分別為A1、B1和A2、B2.
(1)求l1的斜率k1的取值范圍;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設(shè)l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).7.如圖,AB是圓O的直徑,CD是圓O的弦,AB與CD交于E點,且AE:EB=3:1、CE:ED=1:1,CD=83,則直徑AB的長為______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故為:168.從集合M={1,2,3,…,10}選出5個數(shù)組成的子集,使得這5個數(shù)的任兩個數(shù)之和都不等于11,則這樣的子集有______個.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,選出5個不同的數(shù)組成子集,就是從這5組中分別取一個數(shù),而每組的取法有2種,所以這樣的子集有:2×2×2×2×2=32故這樣的子集有32個故為:329.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2
①或a=b2b=2a
②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當a=0b=0時,違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.10.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.11.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(
)
A.
B.
C.
D.
答案:D12.設(shè)集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點,點的橫坐標,縱坐標都是自然數(shù),且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.13.已知空間四邊形ABCD的對角線為AC、BD,設(shè)G是CD的中點,則+(+)等于()
A.
B.
C.
D.
答案:C14.已知平面內(nèi)一動點P到F(1,0)的距離比點P到y(tǒng)軸的距離大1.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線x=-1于M點,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知動點P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動點P在以F(1,0)為焦點,以直線x=-1為準線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.15.已知實數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當且僅當x1=y2=z3,即:x2+y2+z2的最小值為114.故為:11416.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時,由n=k(k>1)不等式成立,推證n=k+1時,左邊應(yīng)增加的項數(shù)是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C17.把一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則點(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點在直線的下方的概率是636=16故選A.18.①附中高一年級聰明的學(xué)生;
②直角坐標系中橫、縱坐標相等的點;
③不小于3的正整數(shù);
④3的近似值;
考察以上能組成一個集合的是______.答案:因為直角坐標系中橫、縱坐標相等的點是確定的,所以②能構(gòu)成集合;不小于3的正整數(shù)是確定的,所以③能構(gòu)成集合;附中高一年級聰明的學(xué)生,不是確定的,原因是沒法界定什么樣的學(xué)生為聰明的,所以①不能構(gòu)成集合;3的近似值沒說明精確到哪一位,所以是不確定的,故④不能構(gòu)成集合.19.若x~N(2,σ2),P(0<x<4)=0.8,則P(0<X<2)=______.答案:∵X~N(2,σ2),∴正態(tài)曲線關(guān)于x=2對稱,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故為:0.4.20.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()
A.(1)的假設(shè)錯誤,(2)的假設(shè)正確
B.(1)與(2)的假設(shè)都正確
C.(1)的假設(shè)正確,(2)的假設(shè)錯誤
D.(1)與(2)的假設(shè)都錯誤答案:A21.有以下四個結(jié)論:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,則x=e2;
④ln(lg1)=0.
其中正確的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A22.已知a>b>0,則3a,3b,4a由小到大的順序是______.答案:由于指數(shù)函數(shù)y=3x在R上是增函數(shù),且a>b>0,可得3a>3b.由于冪函數(shù)y=xa在(0,+∞)上是增函數(shù),故有3a<4a,故3a,3b,4a由小到大的順序是3b<3a<4a.,故為3b<3a<4a.23.4位學(xué)生與2位教師并坐合影留念,針對下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)
(1)教師必須坐在中間;
(2)教師不能坐在兩端,但要坐在一起;
(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學(xué)生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學(xué)生,有A44種坐法,2位教師坐在一起,將其看成一個整體,可以交換位置,有2種坐法,將這個“整體”插在4個學(xué)生的空位中,又由教師不能坐在兩端,則有3個空位可選,則共有2A44A31=144種坐法;(3)先排4位學(xué)生,有A44種坐法,教師不能相鄰,將其依次插在4個學(xué)生的空位中,又由教師不能坐在兩端,則有3個空位可選,有A32種坐法,則共有A44A32=144種坐法..24.直線l過橢圓x24+y23=1的右焦點F2并與橢圓交與A、B兩點,則△ABF1的周長是()A.4B.6C.8D.16答案:根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因為|AF2|+|BF2|=|AB|,所以△ABF1的周長為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.25.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()
A.
B.
C.
D.答案:B26.點M(2,-3,1)關(guān)于坐標原點對稱的點是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A27.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),則λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)?(2,3)=4+9=13,b2=(1,2)?(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)?(a-b)=a2-λb2=13-5λ=0∴λ=135故為:13528.已知a,b,c是空間的一個基底,且實數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:029.若A,B,C是直線存在實數(shù)x使得,實數(shù)x為()
A.-1
B.0
C.
D.答案:A30.若直線l經(jīng)過點M(1,5),且傾斜角為2π3,則直線l的參數(shù)方程為______.答案:由于過點(a,b)傾斜角為α的直線的參數(shù)方程為x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點M(1,5),且傾斜角為2π3,故直線的參數(shù)方程是x=1+t?cos2π3y=5+t?sin2π3即x=1-12ty=5+32t(t為參數(shù)).故為:x=1-12ty=5+32t(t為參數(shù)).31.化簡:AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.32.若不等式的解集,則實數(shù)=___________.答案:-433.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為153.4
和200,若從中選取一個擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.34.口袋中有5只球,編號為1,2,3,4,5,從中任取3球,以ξ表示取出的球的最大號碼,則Eξ的值是()A.4B.4.5C.4.75D.5答案:由題意,ξ的取值可以是3,4,5ξ=3時,概率是1C35=110ξ=4時,概率是C23C35=310(最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版連鎖品牌導(dǎo)購人員協(xié)議模板
- 2024年武山縣人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 臨床上的用藥故事簡短
- 信息技術(shù)及其影響 說課稿001
- 2024版辦公采購合同范本
- 呼吸防護安全培訓(xùn)
- 第二章 第5節(jié) 跨學(xué)科實踐:制作隔音房間模型2024-2025學(xué)年新教材八年級上冊物理新說課稿(人教版2024)
- 2025年魯人新版選修歷史上冊階段測試試卷
- 中國全光網(wǎng)絡(luò)建設(shè)行業(yè)市場現(xiàn)狀調(diào)查及發(fā)展趨向研判報告
- 《課堂舉手模板》課件
- 石群邱關(guān)源電路課件(第8至16單元)白底
- 暫緩執(zhí)行拘留申請書
- 乙肝五項操作規(guī)程(膠體金法)
- 15《石獅》(說課稿)- 2022-2023學(xué)年美術(shù)五年級上冊 嶺南版
- 醫(yī)學(xué)課件-新生兒腹瀉護理查房教學(xué)課件
- 蘇教版中外戲劇名著選讀《玩偶之家》評課稿
- 運用PDCA循環(huán)提高標本送檢率品管圈QCC成果匯報
- 線性代數(shù)PPT(本科)全套完整教學(xué)課件
- 2023-2024學(xué)年云南省昆明市小學(xué)語文四年級期末深度自測題詳細參考答案解析
- 全《12個維度細化部門管理》市場部部門職責
- 2022年廣東省普通高中學(xué)業(yè)水平第一次合格性考試歷史真題卷
評論
0/150
提交評論