版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年江蘇城市職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AP=5,PC=3,DP=5,則AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:102.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()
A.0
B.
C.
D.答案:B3.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個(gè)涂色,有三種結(jié)果,再給最左下邊的上面的涂色,有兩種結(jié)果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結(jié)果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×2×(2+1)=18種結(jié)果,故為18.4.寫(xiě)出系數(shù)矩陣為1221,且解為xy=11的一個(gè)線性方程組是______.答案:由題意得:線性方程組為:x+2y=32x+y=3解之得:x=1y=1;故所求的一個(gè)線性方程組是x+2y=32x+y=3故為:x+2y=32x+y=3.5.在甲、乙兩個(gè)盒子里分別裝有標(biāo)號(hào)為1、2、3、4的四個(gè)小球,現(xiàn)從甲、乙兩個(gè)盒子里各取出1個(gè)小球,每個(gè)小球被取出的可能性相等.
(1)求取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率;
(2)求取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率;
(3)求取出的兩個(gè)小球上標(biāo)號(hào)之和大于5整除的概率.答案:甲、乙兩個(gè)盒子里各取出1個(gè)小球計(jì)為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率P=38;(2)其中取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率為516;(3)其中取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的概率P=386.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求
(1)a?(b+c);
(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a?(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).7.函數(shù)y=ax2+a與(a≠0)在同一坐標(biāo)系中的圖象可能是()
A.
B.
C.
D.
答案:D8.參數(shù)方程(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C9.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B10.如圖,四邊形OABC是邊長(zhǎng)為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于
()
A.
B.
C.
D.1
答案:B11.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長(zhǎng)為_(kāi)_____.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:20312.某處有供水龍頭5個(gè),調(diào)查表明每個(gè)水龍頭被打開(kāi)的可能性為,隨機(jī)變量ξ表示同時(shí)被打開(kāi)的水龍頭的個(gè)數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨(dú)立重復(fù)試驗(yàn)中,恰好發(fā)生k次的概率.對(duì)5個(gè)水龍頭的處理可視為做5次試驗(yàn),每次試驗(yàn)有2種可能結(jié)果:打開(kāi)或未打開(kāi),相應(yīng)的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.13.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.14.如圖,直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1>k2>k3
B.k3>k2>k1
C.k2>k1>k3
D.k3>k1>k2
答案:C15.若角α和β的兩邊分別對(duì)應(yīng)平行且方向相反,則當(dāng)α=45°時(shí),β=______.答案:由題意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故為45°.16.若隨機(jī)變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D17.一個(gè)底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長(zhǎng)為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.18.一射手對(duì)靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()
A.2.44
B.3.376
C.2.376
D.2.4答案:C19.(1)在數(shù)軸上求一點(diǎn)的坐標(biāo),使它到點(diǎn)A(9)與到點(diǎn)B(-15)的距離相等;
(2)在數(shù)軸上求一點(diǎn)的坐標(biāo),使它到點(diǎn)A(3)的距離是它到點(diǎn)B(-9)的距離的2倍.答案:(1)設(shè)該點(diǎn)為M(x),根據(jù)題意,得A、M兩點(diǎn)間的距離為d(A,M)=|x-9|,B、M兩點(diǎn)間的距離為d(M,B)=|-15-x|,結(jié)合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標(biāo)為-3故所求點(diǎn)的坐標(biāo)為-3.(2)設(shè)該點(diǎn)為N(x'),則A、N兩點(diǎn)間的距離為d(A,N)=|x'-3|,B、N兩點(diǎn)間的距離為d(N,B)=|-9-x'|,根據(jù)題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點(diǎn)的坐標(biāo)是-21或-5.20.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()
A.
B.
C.
D.答案:D21.△ABC是邊長(zhǎng)為1的正三角形,那么△ABC的斜二測(cè)平面直觀圖△A′B′C′的面積為(
)
A.
B.
C.
D.答案:D22.拋物線y=x2的焦點(diǎn)坐標(biāo)是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C23.在極坐標(biāo)系中,曲線p=4cos(θ-π3)上任意兩點(diǎn)間的距離的最大值為_(kāi)_____.答案:將原極坐標(biāo)方程p=4cos(θ-π3),化為:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐標(biāo)方程為:x2+y2-2x-23y=0,是一個(gè)半徑為2圓.圓上兩點(diǎn)間的距離的最大值即為圓的直徑,故填:4.24.正方體AC1中,S,T分別是棱AA1,A1B1上的點(diǎn),如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點(diǎn),∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°25.已知△ABC的三個(gè)頂點(diǎn)A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為_(kāi)_____.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).26.已知M為橢圓x2a2+y2b2=1(a>b>0)上的動(dòng)點(diǎn),F(xiàn)1、F2為橢圓焦點(diǎn),延長(zhǎng)F2M至點(diǎn)B,則ρF1MB的外角的平分線為MN,過(guò)點(diǎn)F1作
F1Q⊥MN,垂足為Q,當(dāng)點(diǎn)M在橢圓上運(yùn)動(dòng)時(shí),則點(diǎn)Q的軌跡方程是______.答案:點(diǎn)F1關(guān)于∠F1MF2的外角平分線MQ的對(duì)稱點(diǎn)N在直線F1M的延長(zhǎng)線上,故|F1N|=|PF1|+|PF2|=2a(橢圓長(zhǎng)軸長(zhǎng)),又OQ是△F2F1N的中位線,故|OQ|=a,點(diǎn)Q的軌跡是以原點(diǎn)為圓心,a為半徑的圓,點(diǎn)Q的軌跡方程是x2+y2=a2故為:x2+y2=a227.將1,2,3,9這9個(gè)數(shù)字填在如圖的9個(gè)空格中,要求每一行從左到右,每一列從上到下分別依次增大,當(dāng)3,4固定在圖中的位置時(shí),填寫(xiě)空格的方法數(shù)為()
A.6種
B.12種
C.18種
D.24種
答案:A28.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當(dāng)x<4時(shí)f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應(yīng)填12429.
選修1:幾何證明選講
如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.答案:證明:(1)連接OP,因?yàn)锳C⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以O(shè)P∥BD,從而OP⊥l.因?yàn)镻在⊙O上,所以l是⊙O的切線.(2)連接AP,因?yàn)閘是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.30.已知A、B、M三點(diǎn)不共線,對(duì)于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.31.如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=245,求BD和BC的長(zhǎng).答案:(1)證明:連接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圓中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(內(nèi)錯(cuò)角相等,兩直線平行)則由AE⊥DC知OC⊥DC即DE是⊙O的切線.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽R(shí)t△CAB.∴AC2=1445由勾股定理得BC=655.32.設(shè)a,b,c是三個(gè)不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個(gè)基底,則可以選擇的向量為_(kāi)_____.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)33.在下列4個(gè)命題中,是真命題的序號(hào)為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個(gè)角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個(gè)內(nèi)角相等.
A.①
B.①②
C.①②③
D.①②④答案:D34.設(shè)A(1,-1,1),B(3,1,5),則線段AB的中點(diǎn)在空間直角坐標(biāo)系中的位置是()
A.在y軸上
B.在xOy面內(nèi)
C.在xOz面內(nèi)
D.在yOz面內(nèi)答案:C35.(文)若拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合,則實(shí)數(shù)p的值是______.答案:∵x26+y22=1
中a2=6,b2=2,∴c2=4,c=2∴右焦點(diǎn)坐標(biāo)為(2,0)∵拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合∴拋物線y2=2px中p=4故為436.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一點(diǎn),F(xiàn)A與x軸正向的夾角為60°,則|OA|為_(kāi)_____.答案:過(guò)A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p37.甲、乙兩人約定上午7:20至8:00之間到某站乘公共汽車(chē),在這段時(shí)間內(nèi)有3班公共汽車(chē),它們開(kāi)車(chē)的時(shí)刻分別是7:40、7:50和8:00,甲、乙兩人約定,見(jiàn)車(chē)就乘,則甲、乙同乘一車(chē)的概率為(假定甲、乙兩人到達(dá)車(chē)站的時(shí)刻是互相不牽連的,且每人在7:20至8:00時(shí)的任何時(shí)刻到達(dá)車(chē)站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一輛車(chē)的概率為12×12=14,甲、乙同乘第二輛車(chē)的概率為14×14=116,甲、乙同乘第三輛車(chē)的概率為14×14=116,甲、乙同乘一車(chē)的概率為14+116+116=38,故選C.38.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長(zhǎng)分別為|a|,|b|,|c|所構(gòu)成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>
1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.39.否定結(jié)論“至少有一個(gè)解”的說(shuō)法中,正確的是()
A.至多有一個(gè)解
B.至少有兩個(gè)解
C.恰有一個(gè)解
D.沒(méi)有解答案:D40.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()
A.0<a<1
B.a(chǎn)=1
C.a(chǎn)>1
D.以上均不對(duì)答案:C41.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.42.A、B為球面上相異兩點(diǎn),則通過(guò)A、B兩點(diǎn)可作球的大圓有()A.一個(gè)B.無(wú)窮多個(gè)C.零個(gè)D.一個(gè)或無(wú)窮多個(gè)答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的無(wú)數(shù)個(gè)大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的一個(gè)大圓故選:D43.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加上極限存在才能推出連續(xù).故選C.44.已知函數(shù)f
(x)=logx,則方程()|x|=|f(x)|的實(shí)根個(gè)數(shù)是()
A.1
B.2
C.3
D.2006答案:B45.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長(zhǎng)為8,離心率e=2,過(guò)雙曲線的弦AB被點(diǎn)P(4,2)平分;
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求弦AB所在直線方程;
(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長(zhǎng)為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長(zhǎng)為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長(zhǎng)度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.46.構(gòu)成多面體的面最少是()
A.三個(gè)
B.四個(gè)
C.五個(gè)
D.六個(gè)答案:B47.若關(guān)于的不等式的解集是,則的值為_(kāi)______答案:-2解析:原不等式,結(jié)合題意畫(huà)出圖可知.48.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為_(kāi)_____.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.49.如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線l,過(guò)A作l的垂線AD,AD分別與直線l、圓交于點(diǎn)D、E.求∠DAC的度數(shù)與線段AE的長(zhǎng).答案:如圖,連接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因?yàn)椤螦CB=90°,得∠CAB=30°,那么∠EAB=60°,從而∠ABE=30°,于是AE=12AB=3.(10分)50.參數(shù)方程中當(dāng)t為參數(shù)時(shí),化為普通方程為(
)。答案:x2-y2=1第2卷一.綜合題(共50題)1.用0、1、2、3、4、5這6個(gè)數(shù)字,可以組成無(wú)重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù)為_(kāi)_____(用數(shù)字作答).答案:末尾是0時(shí),有A55=120種;末尾不是0時(shí),有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:3122.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過(guò)()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(guò)(0,sinα),(cosα,0)兩點(diǎn),因而直線不過(guò)第二象限.故選B3.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C4.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個(gè),x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評(píng)析:考察考生對(duì)不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號(hào)與不等號(hào)的關(guān)系。5.參數(shù)方程(t是參數(shù))表示的圖象是()
A.射線
B.直線
C.圓
D.雙曲線答案:A6.已知離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過(guò)點(diǎn)P(3,1).
(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線l交橢圓C于M、N兩點(diǎn),若OM?ON=463tan∠MON(O為坐標(biāo)原點(diǎn)),求直線l的方程.答案:(1)依題意,離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過(guò)點(diǎn)P(3,1).∴3a
2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故橢圓方程為x26+y22=1…(4分)(2)橢圓的左焦點(diǎn)為F1(-2,0),則直線l的方程可設(shè)為y=k(x+2)代入橢圓方程得:(3k2+1)x2+12k2x+12k2-6=0設(shè)M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1?x2=12k2-63k2+1…(6分)由OM?ON=463tan∠MON得:|OM|?|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原點(diǎn)O到l的距離d=|2k|1+k2,則S△OMN=12|MN|d=6(1+k2)3k2+1?|2k|1+k2=236解得k=±33∴l(xiāng)的方程是y=±33(x+2)…(13分)(用其他方法解答參照給分)7.設(shè)a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明
方法一
∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥
(·+·+·)2=.∴+≥.方法二
令,則∴左邊=≥=.∴原不等式成立.8.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長(zhǎng)為_(kāi)_____.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設(shè)圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長(zhǎng)為222-(2)2=22,故為22.9.規(guī)定運(yùn)算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.10.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,F(xiàn)為焦點(diǎn),A,B,C為拋物線上的三點(diǎn),且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為_(kāi)_____.答案:設(shè)向量FA,F(xiàn)B,F(xiàn)C的坐標(biāo)分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.11.設(shè)是的相反向量,則下列說(shuō)法一定錯(cuò)誤的是()
A.∥
B.與的長(zhǎng)度相等
C.是的相反向量
D.與一定不相等答案:D12.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,則λ的值是()
A.-
B.-6
C.6
D.答案:C13.若與垂直,則k的值是()
A.2
B.1
C.0
D.答案:D14.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.15.如圖,AB是圓O的直徑,CD是圓O的弦,AB與CD交于E點(diǎn),且AE:EB=3:1、CE:ED=1:1,CD=83,則直徑AB的長(zhǎng)為_(kāi)_____.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故為:1616.已知a,b,c是空間的一個(gè)基底,且實(shí)數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個(gè)基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:017.數(shù)列{an}滿足a1=1且an+1=(1+1n2+n)an+12n(n≥1).
(Ⅰ)用數(shù)學(xué)歸納法證明:an≥2(n≥2);
(Ⅱ)已知不等式ln(1+x)<x對(duì)x>0成立,證明:an<e2(n≥1),其中無(wú)理數(shù)e=2.71828….答案:(Ⅰ)證明:①當(dāng)n=2時(shí),a2=2≥2,不等式成立.②假設(shè)當(dāng)n=k(k≥2)時(shí)不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.這就是說(shuō),當(dāng)n=k+1時(shí)不等式成立.根據(jù)(1)、(2)可知:ak≥2對(duì)所有n≥2成立.(Ⅱ)由遞推公式及(Ⅰ)的結(jié)論有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)兩邊取對(duì)數(shù)并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式從1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12?1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).18.設(shè)U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},現(xiàn)有一質(zhì)點(diǎn)隨機(jī)落入?yún)^(qū)域U中,則質(zhì)點(diǎn)落入M中的概率是()A.2πB.12πC.1πD.2π答案:滿足條件U={(x,y)|x2+y2≤1,x,y∈R}的圓,如下圖示:其中滿足條件M={(x,y)|x|+|y|≤1,x,y∈R}的平面區(qū)域如圖中陰影所示:則圓的面積S圓=π陰影部分的面積S陰影=2故質(zhì)點(diǎn)落入M中的概率概率P=S陰影S正方形=2π故選D19.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點(diǎn),則a的值是(
)
A.-2
B.-1
C.0
D.1答案:B20.某學(xué)校要從5名男生和2名女生中選出2人作為上海世博會(huì)志愿者,若用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),則數(shù)學(xué)期望Eξ______(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).答案:用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),ξ可取0,1,2,當(dāng)ξ=0時(shí),表示沒(méi)有選到女生;當(dāng)ξ=1時(shí),表示選到一個(gè)女生;當(dāng)ξ=2時(shí),表示選到2個(gè)女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故為:4721.若直線的參數(shù)方程為,則直線的斜率為(
)A.B.C.D.答案:D22.已知P為拋物線y2=4x上一點(diǎn),設(shè)P到準(zhǔn)線的距離為d1,P到點(diǎn)A(1,4)的距離為d2,則d1+d2的最小值為_(kāi)_____.答案:∵y2=4x,焦點(diǎn)坐標(biāo)為F(1,0)根據(jù)拋物線定義可知P到準(zhǔn)線的距離為d1=|PF|d1+d2=|PF|+|PA|進(jìn)而可知當(dāng)A,P,F(xiàn)三點(diǎn)共線時(shí),d1+d2的最小值=|AF|=4故為423.已知l∥α,且l的方向向量為(2,-8,1),平面α的法向量為(1,y,2),則y=______.答案:∵l∥α,∴l(xiāng)的方向向量(2,-8,1)與平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故為12.24.若kxy-8x+9y-12=0表示兩條直線,則實(shí)數(shù)k的值及兩直線所成的角分別是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C25.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(
)
A.
B.
C.
D.
答案:D26.甲、乙兩位運(yùn)動(dòng)員在5場(chǎng)比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為.x甲,.x乙,則下列判斷正確的是()A..x甲>.x乙;甲比乙成績(jī)穩(wěn)定B..x甲>.x乙;乙比甲成績(jī)穩(wěn)定C..x甲<.x乙;甲比乙成績(jī)穩(wěn)定D..x甲<.x乙;乙比甲成績(jī)穩(wěn)定答案:5場(chǎng)比賽甲的得分為16、17、28、30、34,5場(chǎng)比賽乙的得分為15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成績(jī)穩(wěn)定故選D.27.已知M(x0,y0)是圓x2+y2=r2(r>0)內(nèi)異于圓心的一點(diǎn),則直線x0x+y0y=r2與此圓有何種位置關(guān)系?答案:圓心O(0,0)到直線x0x+y0y=r2的距離為d=r2x20+y20.∵P(x0,y0)在圓內(nèi),∴x20+y20<r.則有d>r,故直線和圓相離.28.在空間有三個(gè)向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.29.已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無(wú)理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.30.如圖,圓周上按順時(shí)針?lè)较驑?biāo)有1,2,3,4,5五個(gè)點(diǎn).一只青蛙按順時(shí)針?lè)较蚶@圓從一個(gè)點(diǎn)跳到另一個(gè)點(diǎn),若它停在奇數(shù)點(diǎn)上,則下次只能跳一個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則跳兩個(gè)點(diǎn).該青蛙從“5”這點(diǎn)起跳,經(jīng)2
011次跳后它停在的點(diǎn)對(duì)應(yīng)的數(shù)字是______.答案:起始點(diǎn)為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點(diǎn)是1.故為131.在數(shù)列{an}中,a1=1,an+1=2a
n2+an(n∈N*),
(1)計(jì)算a2,a3,a4
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.答案:(1):a2=2a
12+a1=23,a3=2a
22+a2=24,a4=2a
32+a3=25,(2):猜想an=2n+1下面用數(shù)學(xué)歸納法證明這個(gè)猜想.①當(dāng)n=1時(shí),a1=1,命題成立.②假設(shè)n=k時(shí)命題成立,即ak=2k+1當(dāng)n=k+1時(shí)ak+1=2a
k2+ak=2×2k+12+2k+1(把假設(shè)作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對(duì)一切n∈N*均成立.32.一個(gè)容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.33.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.34.已知平面α內(nèi)有一個(gè)點(diǎn)A(2,-1,2),α的一個(gè)法向量為=(3,1,2),則下列點(diǎn)P中,在平面α內(nèi)的是()
A.(1,-1,1)
B.(1,3,)
C.,(1,-3,)
D.(-1,3,-)答案:B35.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.36.某校對(duì)文明班的評(píng)選設(shè)計(jì)了a,b,c,d,e五個(gè)方面的多元評(píng)價(jià)指標(biāo),并通過(guò)經(jīng)驗(yàn)公式樣S=ab+cd+1e來(lái)計(jì)算各班的綜合得分,S的值越高則評(píng)價(jià)效果越好,若某班在自測(cè)過(guò)程中各項(xiàng)指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個(gè)指標(biāo)的值增加1個(gè)單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時(shí),S的值越大,而在分子都增加1的前提下,分母越小時(shí),S的值增長(zhǎng)越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個(gè)單位會(huì)使得S的值增加最多.故選C.37.化簡(jiǎn):AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.38.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.39.設(shè)四邊形ABCD中,有且,則這個(gè)四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C40.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為
______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個(gè)等式兩邊分別平方,再相加,即可消去含θ的項(xiàng),所以有(x-1)2+y2=4.41.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒(méi)有被排在一起的演講的順序”可通過(guò)如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.42.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見(jiàn),打算從中抽取一個(gè)容量為30的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔(抽樣距)K為()
A.40
B.30
C.20
D.12答案:A43.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。44.已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,則復(fù)數(shù)z的虛部為_(kāi)_____.答案:設(shè)復(fù)數(shù)的虛部是b,∵復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±22345.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B46.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為_(kāi)_____.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.47.(不等式選講選做題)
已知實(shí)數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為_(kāi)_____.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時(shí)取等號(hào),所以ax+by的最大值為3.故為:3.48.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標(biāo)方程;
(2)當(dāng)0≤t<π2及π≤t<3π2時(shí),各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標(biāo)普通方程為x2-y24=1.(2)當(dāng)0≤t≤π2時(shí),x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點(diǎn));當(dāng)0≤t≤3π2時(shí),x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點(diǎn)).49.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B50.已知a>b>0,則3a,3b,4a由小到大的順序是______.答案:由于指數(shù)函數(shù)y=3x在R上是增函數(shù),且a>b>0,可得3a>3b.由于冪函數(shù)y=xa在(0,+∞)上是增函數(shù),故有3a<4a,故3a,3b,4a由小到大的順序是3b<3a<4a.,故為3b<3a<4a.第3卷一.綜合題(共50題)1.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關(guān)系是______.答案:∵圓x2+y2-6x+4y+12=0化成標(biāo)準(zhǔn)形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關(guān)系是內(nèi)切故為:內(nèi)切2.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數(shù)y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯(cuò)誤;C、f(x)=x3,其定義域?yàn)镽,故C錯(cuò)誤;D、f(x)=ex,其定義域?yàn)镽,故D錯(cuò)誤;故選A.3.已知有如下兩段程序:
問(wèn):程序1運(yùn)行的結(jié)果為_(kāi)_____.程序2運(yùn)行的結(jié)果為_(kāi)_____.
答案:程序1是計(jì)數(shù)變量i=21開(kāi)始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個(gè)程序計(jì)算的結(jié)果:sum=0;程序2計(jì)數(shù)變量i=21,開(kāi)始進(jìn)入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開(kāi)始,這個(gè)程序計(jì)算的是sum=21.故為:0;21.4.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標(biāo)方程;
(2)當(dāng)0≤t<π2及π≤t<3π2時(shí),各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標(biāo)普通方程為x2-y24=1.(2)當(dāng)0≤t≤π2時(shí),x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點(diǎn));當(dāng)0≤t≤3π2時(shí),x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點(diǎn)).5.如果命題“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對(duì)應(yīng)的點(diǎn)都在曲線C上
C.不滿足方程f(x,y)=0的點(diǎn)(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C6.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C7.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.8.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AC于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)P.問(wèn):PD與AC是否互相垂直?請(qǐng)說(shuō)明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.9.一直線傾斜角的正切值為34,且過(guò)點(diǎn)P(1,2),則直線方程為_(kāi)_____.答案:因?yàn)橹本€傾斜角的正切值為34,即k=3,又直線過(guò)點(diǎn)P(1,2),所以直線的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.10.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C11.如圖,l1,l2,l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l3與l2間的距離是2,正△ABC的三頂點(diǎn)分別在l1,l2,l3上,則△ABC的邊長(zhǎng)是______.答案:如圖,過(guò)A,C作AE,CF垂直于L2,點(diǎn)E,F(xiàn)是垂足,將Rt△BCF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°至Rt△BAD處,延長(zhǎng)DA交L2于點(diǎn)G.由作圖可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故為:221312.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()
A向東南航行km
B.向東南航行2km
C.向東北航行km
D.向東北航行2km答案:A13.(幾何證明選講選做題)如圖,梯形,,是對(duì)角線和的交點(diǎn),,則
。
答案:1:6解析:,
,,∵,,而∴。14.若函數(shù)f(x)=loga(x+b)的圖象如圖,其中a,b為常數(shù).則函數(shù)g(x)=ax+b的大致圖象是(
)
答案:D解析:試題分析:解:由函數(shù)f(x)=loga(x+b)的圖象為減函數(shù)可知0<a<1,f(x)=loga(x+b)的圖象由f(x)=logax向左平移可知0<b<1,故函數(shù)g(x)=ax+b的大致圖象是D故選D.15.不等式>1–log2x的解是(
)
A.x≥2
B.x>1
C.1xx>2答案:B16.已知f(x+1)=x2+2x+3,則f(2)的值為_(kāi)_____.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.17.已知=(1,2),=(-3,2),k+與-3垂直時(shí),k的值為(
)
A.17
B.18
C.19
D.20答案:C18.證明:已知a與b均為有理數(shù),且a和b都是無(wú)理數(shù),證明a+b也是無(wú)理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無(wú)理數(shù)19.
已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()
A.
B.
C.
D.答案:D20.已知雙曲線的a=5,c=7,則該雙曲線的標(biāo)準(zhǔn)方程為()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C21.復(fù)數(shù)z=sin1+icos2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第______象限.答案:z對(duì)應(yīng)的點(diǎn)為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四22.若a1-i=1-bi,其中a,b都是實(shí)數(shù),i是虛數(shù)單位,則|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故為:5.23.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為_(kāi)_____.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.24.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結(jié)合α∈[0°,180°),可得α=60°故選:B25.應(yīng)用反證法推出矛盾的推導(dǎo)過(guò)程中要把下列哪些作為條件使用()
①結(jié)論相反的判斷,即假設(shè)
②原命題的條件
③公理、定理、定義等
④原結(jié)論
A.①②
B.①②④
C.①②③
D.②③答案:C26.已知,求證:.答案:證明略解析:因?yàn)槭禽啌Q對(duì)稱不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.【名師指引】綜合法證明不等式常用兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運(yùn)用時(shí)要結(jié)合題目條件,有時(shí)要適當(dāng)變形.27.如圖,O是正方形ABCD對(duì)角線的交點(diǎn),四邊形OAED,OCFB都是正方形,在圖中所示的向量中:
(1)與AO相等的向量有
______;
(2)寫(xiě)出與AO共線的向量有
______;
(3)寫(xiě)出與AO的模相等的向量有
______;
(4)向量AO與CO是否相等?答
______.答案:(1)與AO相等的向量有BF(2)與AO共線的向量有DE,CO,BF(3)與AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等28.某批n件產(chǎn)品的次品率為1%,現(xiàn)在從中任意地依次抽出2件進(jìn)行檢驗(yàn),問(wèn):
(1)當(dāng)n=100,1000,10000時(shí),分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)
(2)根據(jù)(1),談?wù)勀銓?duì)超幾何分布與二項(xiàng)分布關(guān)系的認(rèn)識(shí).答案:(1)當(dāng)n=100時(shí),如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產(chǎn)品中次品數(shù)為1,正品數(shù)是99,從100件產(chǎn)品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當(dāng)n=1000時(shí),如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產(chǎn)品中次品數(shù)為10,正品數(shù)是990,從1000件產(chǎn)品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產(chǎn)品中次品數(shù)為1000,正品數(shù)是9000,從10000件產(chǎn)品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對(duì)超幾何分布與二項(xiàng)分布關(guān)系的認(rèn)識(shí):共同點(diǎn):每次試驗(yàn)只有兩種可能的結(jié)果:成功或失?。煌c(diǎn):1、超幾何分布是不放回抽取,二項(xiàng)分布是放回抽?。?/p>
2、超幾何分布需要知道總體的容量,二項(xiàng)分布不需要知道總體容量,但需要知道“成功率”;聯(lián)系:當(dāng)產(chǎn)品的總數(shù)很大時(shí),超幾何分布近似于二項(xiàng)分布.29.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn).過(guò)P作⊙O的切線,切點(diǎn)為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個(gè)含有30°角的三角形,∴BC=12AB,三角形BPC是一個(gè)等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:430.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(
)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.31.氣象意義上從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度均不低于22
(℃)”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)有()A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)答案:①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22,根據(jù)數(shù)據(jù)得出:甲地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)可能為:22,22,24,25,26.其連續(xù)5天的日平均溫度均不低于22.
②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24.根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.③丙地:5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.則肯定進(jìn)入夏季的地區(qū)有甲、乙、丙三地.故選D.32.設(shè)f(x)=ex(x≤0)ln
x(x>0),則f[f(13)]=______.答案:因?yàn)閒(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故為13.33.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過(guò)
B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分
∠BAD,則∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D34.在△ABC中,已知D是AB邊上一點(diǎn),若AD=2DB,CD=λCA+μCB,則λμ的值為_(kāi)_____.答案:∵AD=2DB,∴CD=CA+23
AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故為1235.已知向量OA=(2,3),OB=(4,-1),P是線段AB的中點(diǎn),則P點(diǎn)的坐標(biāo)是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由線段的中點(diǎn)公式可得OP=12(OA+OB)=(3,1),故P點(diǎn)的坐標(biāo)是(3,1),故選B.36.設(shè)和為不共線的向量,若2-3與k+6(k∈R)共線,則k的值為()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B37.用反證法證明命題:“若a,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 孕期春夢(mèng)的健康宣教
- 《設(shè)尋租理論王》課件
- 社會(huì)媒體營(yíng)銷(xiāo)的總結(jié)與展望計(jì)劃
- 線上藝術(shù)教學(xué)的創(chuàng)新嘗試計(jì)劃
- 科學(xué)管理班級(jí)時(shí)間的有效方式計(jì)劃
- 如何實(shí)現(xiàn)部門(mén)間的年度協(xié)同目標(biāo)計(jì)劃
- 森林防火安全培訓(xùn)
- 制定財(cái)務(wù)風(fēng)險(xiǎn)控制的措施計(jì)劃
- 如何分析企業(yè)財(cái)務(wù)數(shù)據(jù)計(jì)劃
- 頭孢類(lèi)抗菌藥物相關(guān)行業(yè)投資規(guī)劃報(bào)告
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計(jì)規(guī)范-PDF解密
- 安全標(biāo)準(zhǔn)化建設(shè)事件事故管理事故事件統(tǒng)計(jì)分析臺(tái)賬
- 《第02課 抗美援朝》教學(xué)設(shè)計(jì)(附學(xué)案)
- 2024年貴州貴安發(fā)展集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 【110kV變電站電氣一次部分設(shè)計(jì)探究5800字(論文)】
- 線上房展會(huì)活動(dòng)方案
- PCB制造成本參數(shù)
- 操作系統(tǒng)智慧樹(shù)知到期末考試答案2024年
- 《跨境供應(yīng)鏈管理》教學(xué)大綱(含課程思政)
- 高三英語(yǔ)二輪復(fù)習(xí)寫(xiě)作專項(xiàng)讀后續(xù)寫(xiě)人物情緒描寫(xiě)方法課件
- 殯儀館物業(yè)服務(wù)方案
評(píng)論
0/150
提交評(píng)論