2023年山東圣翰財(cái)貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年山東圣翰財(cái)貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年山東圣翰財(cái)貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年山東圣翰財(cái)貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年山東圣翰財(cái)貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年山東圣翰財(cái)貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.“所有10的倍數(shù)都是5的倍數(shù),某數(shù)是10的倍數(shù),則該數(shù)是5的倍數(shù),”上述推理()

A.完全正確

B.推理形式不正確

C.錯(cuò)誤,因?yàn)榇笮∏疤岵灰恢?/p>

D.錯(cuò)誤,因?yàn)榇笄疤徨e(cuò)誤答案:A2.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()

A.0.1

B.0.2

C.0.3

D.0.4答案:C3.200輛汽車經(jīng)過某一雷達(dá)地區(qū),時(shí)速頻率分布直方圖如圖所示,則時(shí)速不低于60km/h的汽車數(shù)量為

______輛.答案:時(shí)速不低于60km/h的汽車的頻率為(0.028+0.01)×10=0.38∴時(shí)速不低于60km/h的汽車數(shù)量為200×0.38=76故為:764.已知一種材料的最佳加入量在l000g到2000g之間,若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(

)g。答案:1618或13825.當(dāng)a≠0時(shí),y=ax+b和y=bax的圖象只可能是()

A.

B.

C.

D.

答案:A6.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為30的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔(抽樣距)K為()

A.40

B.30

C.20

D.12答案:A7.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.8.求證:答案:證明見解析解析:證明:此題采用了從第三項(xiàng)開始拆項(xiàng)放縮的技巧,放縮拆項(xiàng)時(shí),不一定從第一項(xiàng)開始,須根據(jù)具體題型分別對(duì)待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。9.如圖是《集合》一章的知識(shí)結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()

A.“集合”的下位

B.“概念”的下位

C.“表示”的下位

D.“基本運(yùn)算”的下位

答案:D10.一部記錄影片在4個(gè)單位輪映,每一單位放映一場(chǎng),則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個(gè)單位看成四個(gè)位置,在四個(gè)位置進(jìn)行全排列,故有A44種結(jié)果,故選C.11.應(yīng)用反證法推出矛盾的推導(dǎo)過程中要把下列哪些作為條件使用()

①結(jié)論相反的判斷,即假設(shè)

②原命題的條件

③公理、定理、定義等

④原結(jié)論

A.①②

B.①②④

C.①②③

D.②③答案:C12.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實(shí)數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時(shí),即m=2或m=3m≠0且m≠3?m=2時(shí)復(fù)數(shù)z為純虛數(shù).故為:2.13.經(jīng)過點(diǎn)M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x14.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.15.函數(shù)y=()|x|的圖象是()

A.

B.

C.

D.

答案:B16.某學(xué)校三個(gè)社團(tuán)的人員分布如下表(每名同學(xué)只參加一個(gè)社團(tuán)):

聲樂社排球社武術(shù)社高一4530a高二151020學(xué)校要對(duì)這三個(gè)社團(tuán)的活動(dòng)效果里等抽樣調(diào)查,按分層抽樣的方法從社團(tuán)成員中抽取30人,結(jié)果聲樂社被抽出12人,則a=______.答案:根據(jù)分層抽樣的定義和方法可得,1245+15=30120+a,解得a=30,故為3017.參數(shù)方程為t為參數(shù))表示的曲線是()

A.一條直線

B.兩條直線

C.一條射線

D.兩條射線答案:D18.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時(shí),由n=k(k>1)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C19.如圖,在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.

(Ⅰ)若AP=λa+μb,求λ和μ的值;

(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比S平行四邊形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,∵得AP=27AB+47AC,∴S平行四邊形ANPMS平行四邊形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;20.點(diǎn)A(-,1)關(guān)于y軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(

A.(-,-1)

B.(,-1)

C.(-,1)

D.(,1)答案:D21.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B22.已知x,y的取值如下表所示:

x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且y^=0.95x+a,以此預(yù)測(cè)當(dāng)x=2時(shí),y=______.答案:∵從所給的數(shù)據(jù)可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴這組數(shù)據(jù)的樣本中心點(diǎn)是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴線性回歸方程是y=0.95x+2.6,∴預(yù)測(cè)當(dāng)x=2時(shí),y=0.95×2+2.6=4.5故為:4.523.將某班的60名學(xué)生編號(hào)為:01,02,…,60,采用系統(tǒng)抽樣方法抽取一個(gè)容量為5的樣本,且隨機(jī)抽得的一個(gè)號(hào)碼為04,則剩下的四個(gè)號(hào)碼依次是______.答案:用系統(tǒng)抽樣抽出的5個(gè)學(xué)生的號(hào)碼從小到大成等差數(shù)列,隨機(jī)抽得的一個(gè)號(hào)碼為04則剩下的四個(gè)號(hào)碼依次是16、28、40、52.故為:16、28、40、5224.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.

①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.

②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).25.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點(diǎn)的極坐標(biāo)為(2,π4).故為:(2,π4).26.與橢圓+y2=1共焦點(diǎn)且過點(diǎn)P(2,1)的雙曲線方程是()

A.-y2=1

B.-y2=1

C.-=1

D.x2-=1答案:B27.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.28.直線被圓x2+y2=9截得的弦長(zhǎng)為(

A.

B.

C.

D.答案:B29.已知,棱長(zhǎng)都相等的正三棱錐內(nèi)接于一個(gè)球,某學(xué)生畫出四個(gè)過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則

A、以上四個(gè)圖形都是正確的

B、只有(2)(4)是正確的

C、只有(4)是錯(cuò)誤的

D、只有(1)(2)是正確的答案:C30.滿足{1,2}∪A={1,2,3}的集合A的個(gè)數(shù)為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個(gè)數(shù)為4.31.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點(diǎn)可以構(gòu)成直角三角形B.A,B,C三點(diǎn)可以構(gòu)成銳角三角形C.A,B,C三點(diǎn)可以構(gòu)成鈍角三角形D.A,B,C三點(diǎn)不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點(diǎn)可以構(gòu)成直角三角形,故選A.32.在半徑為1的圓內(nèi)任取一點(diǎn),以該點(diǎn)為中點(diǎn)作弦,則所做弦的長(zhǎng)度超過3的概率是()A.15B.14C.13D.12答案:如圖,C是弦AB的中點(diǎn),在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合條件的點(diǎn)必須在半徑為12圓內(nèi),則所做弦的長(zhǎng)度超過3的概率是P=S小圓S大圓=(12)2ππ=14.故選B.33.為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識(shí),某中學(xué)高二年級(jí)舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面的頻率分布表,解答下列問題:

序號(hào)

(i)分組

(分?jǐn)?shù))本組中間值

(Gi)頻數(shù)

(人數(shù))頻率

(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合

計(jì)501(1)填充頻率分布表中的空格(在解答中直接寫出對(duì)應(yīng)空格序號(hào)的答案);

(2)為鼓勵(lì)更多的學(xué)生了解“數(shù)學(xué)史”知識(shí),成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參賽的800名學(xué)生中大概有多少同學(xué)獲獎(jiǎng)?

(3)請(qǐng)根據(jù)頻率分布表估計(jì)該校高二年級(jí)參賽的800名同學(xué)的平均成績(jī).答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學(xué)生中大概有288名同學(xué)獲獎(jiǎng).(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計(jì)平均成績(jī)?yōu)?1分.(12分)34.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為______.答案:∵a+2b+3c=6,∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡(jiǎn)得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當(dāng)且僅當(dāng)a:2b:3c=1:1:1時(shí),即a=2,b=1,c=23時(shí)等號(hào)成立由此可得:當(dāng)且僅當(dāng)a=2,b=1,c=23時(shí),a2+4b2+9c2的最小值為12故為:1235.在平行四邊形ABCD中,AC與DB交于點(diǎn)O,E是線段OD的中點(diǎn),AE延長(zhǎng)線與CD交于F.若AC=a,BD=b,則AF=()A.14a+12bB.23a+13bC.12a+14bD.13a+23b答案:∵由題意可得△DEF∽△BEA,∴DEEB=DFAB=13,再由AB=CD可得DFDC=13,∴DFFC=12.作FG平行BD交AC于點(diǎn)G,∴FGDO=CGCO=23,∴GF=23OD=13BD=13b.∵AG=AO+OG=AO+13OC=12AC+16AC=23AC=23a,∴AF=AG+GF=23a+13b,故選B.36.選修4-2:矩陣與變換

已知矩陣A=33cd,若矩陣A屬于特征值6的一個(gè)特征向量為α1=11,屬于特征值1的一個(gè)特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個(gè)特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個(gè)特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.37.設(shè)x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)當(dāng)且僅當(dāng)2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)38.某校在檢查學(xué)生作業(yè)時(shí),抽出每班學(xué)號(hào)尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運(yùn)用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機(jī)抽樣

D.系統(tǒng)抽樣答案:D39.求證:答案:證明見解析解析:證:∴40.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()

A.

B.2

C.4

D.12答案:B41.直角三角形兩直角邊邊長(zhǎng)分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個(gè)同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長(zhǎng)∵兩直角邊邊長(zhǎng)分別為3和4,∴斜邊長(zhǎng)為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個(gè)圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π542.如圖,AB是半圓O的直徑,C、D是半圓上的兩點(diǎn),半圓O的切線PC交AB的延長(zhǎng)線于點(diǎn)P,∠PCB=25°,則∠ADC為()

A.105°

B.115°

C.120°

D.125°

答案:B43.拋物線y2=4x的焦點(diǎn)坐標(biāo)為()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B44.設(shè)

是不共線的向量,(k,m∈R),則A、B、C三點(diǎn)共線的充要條件是()

A.k+m=0

B.k=m

C.km+1=0

D.km-1=0答案:D45.已知A(0,1),B(3,7),C(x,15)三點(diǎn)共線,則x的值是()

A.5

B.6

C.7

D.8答案:C46.在極坐標(biāo)系中,曲線ρ=2cosθ所表示圖形的面積為______.答案:將原極坐標(biāo)方程為p=2cosθ,化成:p2=2ρcosθ,其直角坐標(biāo)方程為:∴x2+y2=2x,是一個(gè)半徑為1的圓,其面積為π.故填:π.47.如圖的矩形,長(zhǎng)為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為

______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:23548.已知棱長(zhǎng)都相等的正三棱錐內(nèi)接于一個(gè)球,某學(xué)生畫出四個(gè)過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個(gè)圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯(cuò)誤的D.只有(1)(2)是正確的答案:(1)當(dāng)平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個(gè)頂點(diǎn)(不過棱)和球心所得截面如(3)圖所示;(4)棱長(zhǎng)都相等的正三棱錐和球心不可能在同一個(gè)面上,所以(4)是錯(cuò)誤的.故選C.49.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B50.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C第2卷一.綜合題(共50題)1.已知正三角形的外接圓半徑為63cm,求它的邊長(zhǎng).答案:設(shè)正三角形的邊長(zhǎng)為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長(zhǎng)為18cm.2.已知直線l1:3x-y+2=0,l2:3x+3y-5=0,則直線l1與l2的夾角是______.答案:因?yàn)橹本€l1的斜率為3,故傾斜角為60°,直線l2的斜率為-3,傾斜角為120°,故兩直線的夾角為60°,即兩直線的夾角為π3,故為

π3.3.平面上一動(dòng)點(diǎn)到兩定點(diǎn)距離差為常數(shù)2a(a>0)的軌跡是否是雙曲線,若a>c是否為雙曲線?答案:由題意,設(shè)兩定點(diǎn)間的距離為2c,則2a<2c時(shí),軌跡為雙曲線的一支2a=2c時(shí),軌跡為一條射線2a>2c時(shí),無軌跡.4.設(shè),求證:。答案:證明略解析:證明:因?yàn)?,所以有。又,故有?!?0分于是有得證。

…………20分5.拋物線x2+y=0的焦點(diǎn)位于()

A.y軸的負(fù)半軸上

B.y軸的正半軸上

C.x軸的負(fù)半軸上

D.x軸的正半軸上答案:A6.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點(diǎn),若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開輔平,得出圓柱的側(cè)面展開圖,從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N點(diǎn),實(shí)際上是從側(cè)面展開圖的長(zhǎng)方形的一個(gè)頂點(diǎn)M到達(dá)不相鄰的另一個(gè)頂點(diǎn)N.而兩點(diǎn)間以線段的長(zhǎng)度最短.所以最短路線就是側(cè)面展開圖中長(zhǎng)方形的一條對(duì)角線.如圖所示.7.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說:“是乙或丙獲獎(jiǎng).”乙說:“甲、丙都未獲獎(jiǎng).”丙說:“我獲獎(jiǎng)了.”丁說:“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是()A.甲B.乙C.丙D.丁答案:若甲是獲獎(jiǎng)的歌手,則都說假話,不合題意.若乙是獲獎(jiǎng)的歌手,則甲、乙、丁都說真話,丙說假話,不符合題意.若丁是獲獎(jiǎng)的歌手,則甲、丁、丙都說假話,乙說真話,不符合題意.故獲獎(jiǎng)的歌手是丙故先C8.(選做題)那霉素發(fā)酵液生物測(cè)定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時(shí)間在16小時(shí)以上,某制藥廠為了縮短時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍固定在29~50°C,精確度要求±1°C,用分?jǐn)?shù)法安排實(shí)驗(yàn),令第一試點(diǎn)在t1處,第二試點(diǎn)在t2處,則t1+t2=(

).答案:799.直線3x+5y-1=0與4x+3y-5=0的交點(diǎn)是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C10.參數(shù)方程(0<θ<2π)表示()

A.雙曲線的一支,這支過點(diǎn)(1,)

B.拋物線的一部分,這部分過(1,)

C.雙曲線的一支,這支過點(diǎn)(-1,)

D.拋物線的一部分,這部分過(-1,)答案:B11.已知雙曲線x2-y22=1,經(jīng)過點(diǎn)M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點(diǎn),若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設(shè)過點(diǎn)M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當(dāng)k存在時(shí)有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的兩個(gè)不同的根是兩交點(diǎn)A、B的橫坐標(biāo)∴x1+x2=2(k-k2)2-k2

又M(1,1)為線段AB的中點(diǎn)∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此當(dāng)k=2時(shí),方程(1)無實(shí)數(shù)解故過點(diǎn)m(1,1)與雙曲線交于兩點(diǎn)A、B且M為線段AB中點(diǎn)的直線不存在.(2)當(dāng)x=1時(shí),直線經(jīng)過點(diǎn)M但不滿足條件,綜上,符合條件的直線l不存在12.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設(shè)a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.13.一個(gè)盒子裝有10個(gè)紅、白兩色同一型號(hào)的乒乓球,已知紅色乒乓球有3個(gè),若從盒子里隨機(jī)取出3個(gè)乒乓球,則其中含有紅色乒乓球個(gè)數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個(gè)數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故為:910.14.將6位志愿者分成4組,每組至少1人,分赴世博會(huì)的四個(gè)不同場(chǎng)館服務(wù),不同的分配方案有______種(用數(shù)字作答).答案:由題意,六個(gè)人分為四組,若有三個(gè)人一組,則四組人數(shù)為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會(huì)的四個(gè)不同場(chǎng)館服務(wù),不同的分配方案有(20+45)×A44=1560種故為:1560.15.已知圖所示的矩形,其長(zhǎng)為12,寬為5.在矩形內(nèi)隨同地措施1000顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為550顆.則可以估計(jì)出陰影部分的面積約為______.答案:∵矩形的長(zhǎng)為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.16.若方程sin2x+4sinx+m=0有實(shí)數(shù)解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D17.算法:第一步

x=a;第二步

若b>x則x=b;第三步

若c>x,則x=c;

第四步

若d>x,則x=d;

第五步

輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.18.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時(shí),∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時(shí),結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時(shí)成立假設(shè)不等式當(dāng)n=k(k≥1)時(shí)成立當(dāng)n=k+1時(shí),由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個(gè)不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對(duì)所有的正整數(shù)n成立19.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°20.下表為廣州亞運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價(jià)格,某球迷賽前準(zhǔn)備1200元,預(yù)訂15張下表中球類比賽的門票。比賽項(xiàng)目票價(jià)(元/場(chǎng))足球

籃球

乒乓球100

80

60若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,該球迷想預(yù)訂上表中三種球類比賽門票,其中籃球比賽門票數(shù)與乒乓球比賽門票數(shù)相同,且籃球比賽門票的費(fèi)用不超過足球比賽門票的費(fèi)用,求可以預(yù)訂的足球比賽門票數(shù)。答案:解:設(shè)預(yù)訂籃球比賽門票數(shù)與乒乓球比賽門票數(shù)都是n(n∈N*)張,則足球比賽門票預(yù)訂(15-2n)張,由題意得解得由n∈N*,可得n=5,∴15-2n=5∴可以預(yù)訂足球比賽門票5張。21.a、b、c∈R,則下列命題為真命題的是______.

①若a>b,則ac2>bc2

②若ac2>bc2,則a>b

③若a<b<0,則a2>ab>b2

④若a<b<0,則1a<1b.答案:當(dāng)c=0時(shí),ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③22.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是()

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D23.若lga,lgb是方程2x2-4x+1=0的兩個(gè)根,則的值等于

A.2

B.

C.4

D.答案:A24.如圖,橢圓C2x2a2+

y2b2=1的焦點(diǎn)為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)n為過原點(diǎn)的直線,l是與n垂直相交與點(diǎn)P,與橢圓相交于A,B兩點(diǎn)的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說出;若不存在,請(qǐng)說明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設(shè)A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),假設(shè)使OA?OB=0成立的直線l存在.(i)當(dāng)l不垂直于x軸時(shí),設(shè)l的方程為y=kx+m,由l與n垂直相交于P點(diǎn),且|OP|=1得|m|1+

k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡(jiǎn)得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡(jiǎn)得-5(k2+1)=0矛盾.即此時(shí)直線l不存在.(ii)當(dāng)l垂直于x軸時(shí),滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點(diǎn)的坐標(biāo)為(1,32),(1,-32)或(-1,32),(-1,-32).當(dāng)x=1時(shí),OA?OB=(1,32)?

(1,-32)=-54≠0.當(dāng)x=-1時(shí),OA?OB=(-1,32)?

(-1,-32)=-54≠0.∴此時(shí)直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.25.若雙曲線的焦點(diǎn)到其漸近線的距離等于實(shí)軸長(zhǎng),則該雙曲線的離心率為()

A.5

B.

C.2

D.答案:B26.設(shè)F1、F2分別是橢圓x225+y216=1的左、右焦點(diǎn),P為橢圓上一點(diǎn),M是F1P的中點(diǎn),|OM|=3,則P點(diǎn)到橢圓左焦點(diǎn)距離為______.答案:由題意知,OM是三角形PF1P的中位線,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故為4.27.假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個(gè)圓,其一外公切線為A1A2,切點(diǎn)為A1及A2令點(diǎn)O為連心線O1O2的中點(diǎn),過O作OA⊥A1A2,由直角梯形的中位線性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.28.若集合M={a,b,c}中的元素是△ABC的三邊長(zhǎng),則△ABC一定不是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D29.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()

A.A88

B.A55A44

C.A44A44

D.A85答案:B30.不論k為何實(shí)數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(0,1)點(diǎn),與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),必須定點(diǎn)在圓上或圓內(nèi),即:a2+12

≤4+2a所以,-1≤a≤3故為:-1≤a≤3.31.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對(duì)于f(x)定義域內(nèi)的任意一個(gè)自變量x1都存在唯一個(gè)個(gè)自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號(hào)是______.答案:根據(jù)題意可知:①f(x)=3lnx,x=1時(shí),lnx沒有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個(gè)自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當(dāng)x=2kπ+π2時(shí),函數(shù)沒有倒數(shù),不成立.所以成立的函數(shù)序號(hào)為③故為③32.兩條平行線l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于()

A.

B.

C.

D.答案:C33.已知直線l經(jīng)過點(diǎn)P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長(zhǎng)為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時(shí)與l1、l2的交點(diǎn)分別為A′(3,-4)或B′(3,-9),截得的線段AB的長(zhǎng)|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長(zhǎng)為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過點(diǎn)P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.34.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2

①或a=b2b=2a

②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當(dāng)a=0b=0時(shí),違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.35.不等式的解集是(

A.

B.

C.

D.答案:D36.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用()

A.散點(diǎn)圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A37.將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.38.已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點(diǎn)M(0,2),求橢圓c的方程答案:若焦點(diǎn)在x軸很明顯,過點(diǎn)M(0,2)點(diǎn)M即橢圓的上端點(diǎn),所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點(diǎn)在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.39.下圖是由A、B、C、D中的哪個(gè)平面圖旋轉(zhuǎn)而得到的(

)答案:A40.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.41.對(duì)于任意空間四邊形,試證明它的一組對(duì)邊中點(diǎn)的連線與另一組對(duì)邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點(diǎn),利用多邊形加法法則可得①又E、F分別是AB、CD的中點(diǎn),故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.42.已知隨機(jī)變量x服從二項(xiàng)分布x~B(6,),則P(x=2)=()

A.

B.

C.

D.答案:D43.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.44.已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過來則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.45.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(

)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.46.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長(zhǎng)為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點(diǎn)E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.47.過點(diǎn)M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點(diǎn).∵點(diǎn)B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式得A(-t,2t-6).∵A點(diǎn)在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.48.過點(diǎn)A(1,4)且在x、y軸上的截距相等的直線共有______條.答案:當(dāng)直線過坐標(biāo)原點(diǎn)時(shí),方程為y=4x,符合題意;當(dāng)直線不過原點(diǎn)時(shí),設(shè)直線方程為x+y=a,代入A的坐標(biāo)得a=1+4=5.直線方程為x+y=5.所以過點(diǎn)A(1,4)且在x、y軸上的截距相等的直線共有2條.故為2.49.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個(gè)B.2個(gè)C.4個(gè)D.8個(gè)答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個(gè),故選C.50.函數(shù)y=2x的值域?yàn)開_____.答案:因?yàn)椋簒≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域?yàn)椋篬1,+∞).故為:[1,+∞).第3卷一.綜合題(共50題)1.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為()

A.3

B.-2

C.2

D.不存在答案:B2.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為23,科目B每次考試成績(jī)合格的概率均為12.假設(shè)各次考試成績(jī)合格與否均互不影響.

(Ⅰ)求他不需要補(bǔ)考就可獲得證書的概率;

(Ⅱ)在這項(xiàng)考試過程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.3.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.4.下列表述正確的是()

①歸納推理是由部分到整體的推理;

②歸納推理是由一般到一般的推理;

③演繹推理是由一般到特殊的推理;

④類比推理是由特殊到一般的推理;

⑤類比推理是由特殊到特殊的推理.

A.①②③

B.②③④

C.②④⑤

D.①③⑤答案:D5.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C6.圓錐曲線x=4secθ+1y=3tanθ的焦點(diǎn)坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運(yùn)算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個(gè)單位得到,而雙曲線x216-y29=1的焦點(diǎn)為(-5,0),(5,0)故所求雙曲線的焦點(diǎn)為(-4,0),(6,0)故為:(-4,0),(6,0)7.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.8.已知A、B、M三點(diǎn)不共線,對(duì)于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.9.如圖,AB是平面a的斜線段,A為斜足,若點(diǎn)P在平面a內(nèi)運(yùn)動(dòng),使得△ABP的面積為定值,則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實(shí)就是一個(gè)平面斜截一個(gè)圓柱表面的問題,因?yàn)槿切蚊娣e為定值,以AB為底,則底邊長(zhǎng)一定,從而可得P到直線AB的距離為定值,分析可得,點(diǎn)P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.10.在極坐標(biāo)系中,若點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點(diǎn),則ρ0=______.答案:∵點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點(diǎn),∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.11.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長(zhǎng)最小,請(qǐng)給出修建方案(作出圖形,在圖中標(biāo)出此時(shí)碼頭Q的位置),并求公路總長(zhǎng)的最小值(精確到0.001千米)答案:(1)過點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長(zhǎng)=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時(shí),公路總長(zhǎng)最小,最小值為9.806千米…(16分)12.等于()

A.a(chǎn)

B.a(chǎn)2

C.a(chǎn)3

D.a(chǎn)4答案:B13.設(shè)z∈C,|z|≤2,則點(diǎn)Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點(diǎn)Z表示的圖形是半徑為2的圓面,故選B14.四名男生三名女生排成一排,若三名女生中有兩名相鄰,但三名女生不能連排,則不同的排法數(shù)有()A.3600B.3200C.3080D.2880答案:由題意知本題需要利用分步計(jì)數(shù)原理來解,∵三名女生有且僅有兩名相鄰,∴把這兩名女生看做一個(gè)元素,與另外一名女生作為兩個(gè)元素,有C32A22種結(jié)果,把男生排列有A44,把女生在男生所形成的5個(gè)空位中排列有A52種結(jié)果,共有C32A22A44A52=2880種結(jié)果,故選D.15.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.16.集合A={3,2a},B={a,b},若A∩B={2},則A∪B=______.答案:根據(jù)題意,若A∩B={2},則2∈A,2∈B,而已知A={3,2a},則必有2a=2,故a=1,又由2∈B,且a=1則b=2,故A∪B={1,2,3},故為{1,2,3}.17.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B18.在數(shù)列{an}中,a1=1,an+1=2a

n2+an(n∈N*),

(1)計(jì)算a2,a3,a4

(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.答案:(1):a2=2a

12+a1=23,a3=2a

22+a2=24,a4=2a

32+a3=25,(2):猜想an=2n+1下面用數(shù)學(xué)歸納法證明這個(gè)猜想.①當(dāng)n=1時(shí),a1=1,命題成立.②假設(shè)n=k時(shí)命題成立,即ak=2k+1當(dāng)n=k+1時(shí)ak+1=2a

k2+ak=2×2k+12+2k+1(把假設(shè)作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對(duì)一切n∈N*均成立.19.過點(diǎn)(0,2)且與圓x2+y2=4只有一個(gè)交點(diǎn)的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(diǎn)(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(diǎn)(0,2)在圓x2+y2=4上,∴過點(diǎn)(0,2)且與圓x2+y2=4只有一個(gè)交點(diǎn)的直線方程是0x+2y=4,即y=2.故為:y=2.20.命題“方程|x|=1的解是x=±1”中,使用邏輯詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“或”C.使用了邏輯連接詞“且”D.使用了邏輯連接詞“或”與“且”答案:∵命題“方程|x|=1的解是x=±1”等價(jià)于命題“方程|x|=1的解是x=1或x=-1.”∴該命題使用了邏輯連接詞“或”.故選B.21.已知空間四點(diǎn)A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[

]A

.4

B.1

C.10

D.11答案:D22.兩條互相平行的直線分別過點(diǎn)A(6,2)和B(-3,-1),并且各自繞著A,B旋轉(zhuǎn),如果兩條平行直線間的距離為d.

求:

(1)d的變化范圍;

(2)當(dāng)d取最大值時(shí)兩條直線的方程.答案:(1)方法一:①當(dāng)兩條直線的斜率不存在時(shí),即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當(dāng)兩條直線的斜率存在時(shí),設(shè)這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當(dāng)d取最大值時(shí),兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)23.“神六”上天并順利返回,讓越來越多的青少年對(duì)航天技術(shù)發(fā)生了興趣.某學(xué)??萍夹〗M在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn),設(shè)計(jì)方案

如圖:航天器運(yùn)行(按順時(shí)針方向)的軌跡方程為x2100+y225=1,變軌(航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為

對(duì)稱軸、M(0,647)為頂點(diǎn)的拋物線的實(shí)線部分,降落點(diǎn)為D(8,0),觀測(cè)點(diǎn)A(4,0)、B(6,0)同時(shí)跟蹤航天器.試問:當(dāng)航天器在x軸上方時(shí),觀測(cè)點(diǎn)A、B測(cè)得離航天器的距離分別為______時(shí)航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點(diǎn)為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點(diǎn)的坐標(biāo)為(6,4),|AC|=25,|BC|=4.故為:25、4.24.已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡是()

A.圓

B.橢圓

C.雙曲線

D.拋物線答案:B25.如圖,以1×3方格紙中的格點(diǎn)為起點(diǎn)和終點(diǎn)的所有向量中,有多少種大小不同的模?有多少種不同的方向?

答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個(gè)模,進(jìn)而分析方向,正方形的邊對(duì)應(yīng)的向量共有四個(gè)方向,邊長(zhǎng)為1的正方形的對(duì)角線對(duì)應(yīng)的向量共四個(gè)方向;1×2的矩形的對(duì)角線對(duì)應(yīng)的向量共四個(gè)方向;1×3的矩形對(duì)角線對(duì)應(yīng)的向量共有四個(gè)方向共有16個(gè)方向26.已知直線l的斜率為k=-1,經(jīng)過點(diǎn)M0(2,-1),點(diǎn)M在直線上,以M0M的數(shù)量t為參數(shù),則直線l的參數(shù)方程為______.答案:∵直線l經(jīng)過點(diǎn)M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數(shù)方程為x=2+tcos3π4y=-1+tsin3π4

(t為參數(shù));即為x=2-22ty=-1+22t(t為參數(shù)).故為:x=2-22ty=-1+22t(t為參數(shù)).27.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實(shí)數(shù)k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為228.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(

)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個(gè),x≠c

c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2

選B評(píng)析:考察考生對(duì)不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號(hào)與不等號(hào)的關(guān)系。29.直線4x-3y+5=0與直線8x-6y+5=0的距離為______.答案:直線4x-3y+5=0即8x-6y+10=0,由兩平行線間的距離公式得:直線4x-3y+5=0(8x-6y+10=0)與直線8x-6y+5=0的距離是

|10-5|62+82=12,故為:12.30.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D31.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為432.直線上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是_______。答案:,或33.已知某離散型隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=76,ξ的分布列如下,則a=______.

答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:1334.下列向量組中,能作為表示它們所在平面內(nèi)所有向量的基底的是()A.a(chǎn)=(0,0),b=(1,-2)B.a(chǎn)=(1,-2),b=(2,-4)C.a(chǎn)=(3,5),b=(6,10)D.a(chǎn)=(2,-3),b=(6,9)答案:可以作為基底的向量需要是不共線的向量,A中一個(gè)向量是零向量,兩個(gè)向量共線,不合要求B中兩個(gè)向量是a=12b,兩個(gè)向量共線,C項(xiàng)中的兩個(gè)向量也共線,故選D.35.(2x+1)5的展開式中的第3項(xiàng)的系數(shù)是()A.10B.40C.80D.120答案:(2x+1)5的展開式中的第3項(xiàng)為T3=C25(2x)3

×1=80x3,故(2x+1)5的展開式中的第3項(xiàng)的系數(shù)是80,故選C.36.解下列關(guān)于x的不等式

(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論