2023年安徽城市管理職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年安徽城市管理職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年安徽城市管理職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年安徽城市管理職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年安徽城市管理職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年安徽城市管理職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.O、B、C為空間四個點,又、、為空間的一個基底,則()

A.O、A、B、C四點不共線

B.O、A、B、C四點共面,但不共線

C.O、A、B、C四點中任意三點不共線

D.O、A、B、C四點不共面答案:D2.已知圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標方程化為普通方程;

(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.3.集合{1,2,3}的真子集總共有()A.8個B.7個C.6個D.5個答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選B.4.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()

A.30°

B.40°

C.80°

D.70°

答案:C5.橢圓的兩個焦點坐標是()

A.(-3,5),(-3,-3)

B.(3,3),(3,-5)

C.(1,1),(-7,1)

D.(7,-1),(-1,-1)答案:B6.橢圓=1的焦點為F1,點P在橢圓上,如果線段PF1的中點M在y軸上,那么點M的縱坐標是()

A.±

B.±

C.±

D.±答案:A7.下圖是由A、B、C、D中的哪個平面圖旋轉(zhuǎn)而得到的(

)答案:A8.向面積為S的△ABC內(nèi)任投一點P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因為陰影部分的面積是整個三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.9.設A、B、C、D是半徑為r的球面上的四點,且滿足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B10.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()

A.

B.2

C.4

D.12答案:B11.在平行四邊形ABCD中,對角線AC與BD交于點O,AB+AD=λAO,則λ=______.答案:∵四邊形ABCD為平行四邊形,對角線AC與BD交于點O,∴AB+AD=AC,又O為AC的中點,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故為:2.12.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.13.動點P到直線x+2=0的距離減去它到M(1,0)的距離之差等于1,則動點P的軌跡是______.答案:將直線x+2=0向右平移1個長度單位得到直線x+1=0,則動點到直線x+1=0的距離等于它到M(1,0)的距離,由拋物線定義知:點P的軌跡是以點M為焦點的拋物線.:以點M為焦點以x=-1為準線的拋物線.14.復數(shù)z=sin1+icos2在復平面內(nèi)對應的點位于第______象限.答案:z對應的點為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四15.列舉兩種證明兩個三角形相似的方法.答案:三邊對應成比例,兩個三角形相似,兩邊對應成比例且夾角相等,兩個三角形相似.16.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.17.如圖程序運行后輸出的結(jié)果為______.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當n=12時,不滿足“s<10”,則輸出n的值2故為:218.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.19.設P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A20.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:20321.如圖,一個空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長為2,那么

這個幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個腰長是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.22.設集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.23.設全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當集合C∪A∩B的所有子集個數(shù)最多時,集合B中最多有三個元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個數(shù)為:23=8.故選D.24.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.25.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設M(x,y)為所求軌跡上任一點,則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.26.已知復數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:

(Ⅱ)將(x、y)用為點P的坐標,(x'、y')作為點Q的坐標,上述關(guān)系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標為(3,2),試求點P的坐標;

(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.答案:(I)由題設得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14

,即P點的坐標為(343,14).

(Ⅲ)∵直線y=kx上的任意點P(x,y),其經(jīng)變換后的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當k=0時,y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-327.以下程序輸入2,3,4運行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C28.已知二項分布滿足X~B(6,23),則P(X=2)=______,EX=______.答案:∵X服從二項分布X~B(6,23)∴P(X=2)=C26(13)4(23)2=20243∵隨機變量ξ服從二項分布ξ~B(6,23),∴期望Eξ=np=6×23=4故為:20243;429.設P、Q為兩個非空實數(shù)集,定義集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},則P+Q中元素的個數(shù)是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴當a=0時,b∈Q,P+Q={1,2,6}當a=2時,b∈Q,P+Q={3,4,8}當a=5時,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故選C30.平面直角坐標系中,O為坐標原點,設向量其中,若且0≤μ≤λ≤1,那么C點所有可能的位置區(qū)域用陰影表示正確的是()

A.

B.

C.

D.

答案:A31.直線kx-y+1=3k,當k變動時,所有直線都通過定點

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C32.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標方程;

(2)當0≤t<π2及π≤t<3π2時,各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標普通方程為x2-y24=1.(2)當0≤t≤π2時,x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點);當0≤t≤3π2時,x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點).33.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權(quán))按“0”,令aij=1,第i號同學同意第j號同學當選.0,第i號同學不同意第j號同學當選.其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學當選的人數(shù)為()A.a(chǎn)11+a12+…+a1k+a21+a22+…+a2kB.a(chǎn)11+a21+…+ak1+a12+a22+…+ak2C.a(chǎn)11a12+a21a22+…+ak1ak2D.a(chǎn)11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學生是否同意第1號同學當選依次由a11,a21,a31,…,ak1來確定(aij=1表示同意,aij=0表示不同意或棄權(quán)),是否同意第2號同學當選依次由a12,a22,…,ak2確定,而是否同時同意1,2號同學當選依次由a11a12,a21a22,…,ak1ak2確定,故同時同意1,2號同學當選的人數(shù)為a11a12+a21a22+…+ak1ak2,故選C.34.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結(jié)果用數(shù)值表示).答案:把AB看成一個整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數(shù)A77所以概率為A22A44A25A77=421故為:421.35.已知隨機變量ξ的數(shù)學期望Eξ=0.05且η=5ξ+1,則Eη等于()

A.1.15

B.1.25

C.0.75

D.2.5答案:B36.以下四組向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B37.{,,}是空間向量的一個基底,設=+,=+,=+,給出下列向量組:①{,,}②{,,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.

A.1

B.2

C.3

D.4答案:C38.(1)把二進制數(shù)化為十進制數(shù);(2)把化為二進制數(shù).答案:(1)45,(2)解析:(1)先把二進制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進制的運算規(guī)則計算出結(jié)果;(2)根據(jù)二進制數(shù)“滿二進一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..39.在平行四邊形ABCD中,等于()

A.

B.

C.

D.答案:C40.若直線l的方向向量為a,平面α的法向量為n,能使l∥α的是()A.a(chǎn)=(1,0,0),n=(-2,0,0)B.a(chǎn)=(1,3,5),n=(1,0,1)C.a(chǎn)=(0,2,1),n=(-1,0,-1)D.a(chǎn)=(1,-1,3),n=(0,3,1)答案:若l∥α,則a?n=0.而A中a?n=-2,B中a?n=1+5=6,C中a?n=-1,只有D選項中a?n=-3+3=0.故選D.41.已知橢圓C1:x2a2+y2b2=1(a>b>0)的離心率為33,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓相切.

(1)求橢圓C1的方程;

(2)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直于直線l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;

(3)設C2與x軸交于點Q,不同的兩點R,S在C2上,且滿足QR?RS=0,求|QS|的取值范圍.答案:(1)由e=33得2a2=3b2,又由直線l:y=x+2與圓x2+y2=b2相切,得b=2,a=3,∴橢圓C1的方程為:x23+y22=1.(4分)(2)由MP=MF2得動點M的軌跡是以l1:x=-1為準線,F(xiàn)2為焦點的拋物線,∴點M的軌跡C2的方程為y2=4x.(8分)(3)Q(0,0),設R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR?RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化簡得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(當且僅當y1=±4時等號成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴當y22=64,即y2=±8時|QS|min=85,∴|QS|的取值范圍是[85,+∞).(13分)42.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標系中,設直線2x-y+1=0在矩陣MN對應的變換作用下得到曲線F,求曲線F的方程.答案:由題設得MN=01100-111=100-1.…(3分)設(x,y)是直線2x-y+1=0上任意一點,點(x,y)在矩陣MN對應的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因為點(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)43.A、B是直線l上的兩點,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點間的距離是______答案:CD=CA+AB+BD,|CD|=|

CA+AB+BD|,CD=32+32+42+2×

3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或4344.管理人員從一池塘中撈出30條魚做上標記,然后放回池塘,將帶標記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設該池塘中有x條魚,由題設條件建立方程:30x=250,解得x=750.故為:750.45.已知四邊形ABCD,

點E、

F、

G、

H分別是AB、BC、CD、DA的中點,

求證:

EF=HG.答案:證明:∵E、F、G、H分別是AB、BC、CD、DA的中點,∴HG=12AC,EF=12AC,∴EF=HG.46.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標準方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.47.設直線過點(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()

A.±

B.±2

C.±2

D.±4答案:B48.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設正方體邊長是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.49.寫出1×2×3×4×5×6的一個算法.答案:按照逐一相乘的程序進行第一步:計算1×2,得到2;第二步:將第一步的運算結(jié)果2與3相乘,得到6;第三步:將第二步的運算結(jié)果6與4相乘,得到24;第四步:將第三步的運算結(jié)果24與5相乘,得到120;第五步:將第四的運算結(jié)果120與6相乘,得到720;第六步:輸出結(jié)果.50.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______

種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:480第2卷一.綜合題(共50題)1.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>32.某同學參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得0分,假設這位同學答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響,則這名同學得300分的概率為

;這名同學至少得300分的概率為

.答案:0.228;0.564解析:得300分可能是答對第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。3.已知函數(shù)f

(x)=logx,則方程()|x|=|f(x)|的實根個數(shù)是()

A.1

B.2

C.3

D.2006答案:B4.在極坐標系中,若等邊三角形ABC(頂點A,B,C按順時針方向排列)的頂點A,B的極坐標分別為(2,π6),(2,7π6),則頂點C的極坐標為______.答案:如圖所示:由于A,B的極坐標(2,π6),(2,7π6),故極點O為線段AB的中點.故等邊三角形ABC的邊長為4,AB邊上的高(即點C到AB的距離)OC等于23.設點C的極坐標為(23,π6+π2),即(23,2π3),故為(23,2π3).5.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現(xiàn)將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當E從D運動到C,則K所形成軌跡的長度為()

A.

B.

C.

D.答案:B6.已知x+2y+3z=1,則x2+y2+z2取最小值時,x+y+z的值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,當且僅當x1=y2=z3取等號,此時y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故為:37.7.已知|OA|=1,|OB|=3,OA?OB=0,點C在∠AOB內(nèi),且∠AOC=30°,設OC=mOA+nOB(m、n∈R),則mn等于______.答案:∵|OA|=1,|OB|=3,OA?OB=0,OA⊥OBOC?OB=OC×3cos60°=32OC=3×12

|OC

|OC?OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x軸方向上的分量為12|OC|OC在y軸方向上的分量為32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m兩式相比可得:mn=3.故為:38.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A9.比較大?。篴=0.20.5,b=0.50.2,則()

A.0<a<b<1

B.0<b<a<1

C.1<a<b

D.1<b<a答案:A10.已知x,y之間的一組數(shù)據(jù):x1.081.121.191.28y2.252.372.402.55y與x之間的線性性回歸方y(tǒng)=bx+a必過定點______.答案:回歸直線方程一定過樣本的中心點(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,

.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點是(1.1675,2.3925),故為(1.1675,2.3925).11.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.12.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則

f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.13.請寫出所給三視圖表示的簡單組合體由哪些幾何體組成.______.答案:由已知中的三視圖我們可以判斷出該幾何體是由一個底面面積相等的圓錐和圓柱組合而成故為:圓柱體,圓錐體14.曲線(θ為參數(shù))上的點到原點的最大距離為()

A.1

B.

C.2

D.答案:C15.如圖所示,已知點P為菱形ABCD外一點,且PA⊥面ABCD,PA=AD=AC,點F為PC中點,則二面角CBFD的正切值為()

A.

B.

C.

D.

答案:D16.已知點P在曲線C1:x216-y29=1上,點Q在曲線C2:(x-5)2+y2=1上,點R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線的知識可知:C1x216-y29=1的兩個焦點分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C17.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運業(yè)務,它們之間的直線距離的部分機票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設這四個城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A18.在研究打酣與患心臟病之間的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“打酣與患心臟病有關(guān)”的結(jié)論,并且有99%以上的把握認為這個結(jié)論是成立的.下列說法中正確的是()

A.100個心臟病患者中至少有99人打酣

B.1個人患心臟病,則這個人有99%的概率打酣

C.100個心臟病患者中一定有打酣的人

D.100個心臟病患者中可能一個打酣的人都沒有答案:D19.兩直線3x+y-3=0與6x+my+1=0平行,則它們之間的距離為()

A.4

B.

C.

D.答案:D20.直線y=2x+1的參數(shù)方程是()

A.(t為參數(shù))

B.(t為參數(shù))

C.(t為參數(shù))

D.(θ為參數(shù))

答案:B21.已知函數(shù)f(x)=2-x,x≤112+log2x,x>1,則滿足f(x)≥1的x的取值范圍為______.答案:當x≤1時,2-x≥1,解得-x≥0,即x≤0,所以x≤0;當x>1時,12+log2x≥1,解得x≥2,所以x≥2.所以滿足f(x)≥1的x的取值范圍為(-∞,0]∪[2,+∞).故為:(-∞,0]∪[2,+∞).22.質(zhì)地均勻的正四面體玩具的4個面上分別刻著數(shù)字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.

(1)求與桌面接觸的4個面上的4個數(shù)的乘積不能被4整除的概率;

(2)設ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數(shù)均為奇數(shù),概率為P1=(12)4=116②4個數(shù)中有3個奇數(shù),另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.23.已知

|x|<a,|y|<a.求證:|xy|<a.答案:證明:∵0<|x|<a,0<|y|<a∴由不等式的性質(zhì),可得|xy|<a24.設雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(a,0),(0,b)兩點,已知原點到直線l的距離為34c,則雙曲線的離心率為______.答案:∵直線l過(a,0),(0,b)兩點,∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.25.由棱長為a的正方體的每個面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點為頂點的凸多面體的全面積是______.答案:由棱長為a的正方體的每個面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個,得到6個頂點,圍成一個正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點的距離應為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a226.已知拋物線x2=4y的焦點為F,A、B是拋物線上的兩動點,且AF=λFB(λ>0).過A、B兩點分別作拋物線的切線,設其交點為M.

(I)證明FM.AB為定值;

(II)設△ABM的面積為S,寫出S=f(λ)的表達式,并求S的最小值.答案:(1)設A(x1,y1),B(x2,y2),M(xo,yo),焦點F(0,1),準線方程為y=-1,顯然AB斜率存在且過F(0,1)設其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點M坐標,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當λ=1時,S取得最小值4.27.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°28.用反證法證明“a+b=1”時的反設為()

A.a(chǎn)+b>1且a+b<1

B.a(chǎn)+b>1

C.a(chǎn)+b>1或a+b<1

D.a(chǎn)+b<1答案:C29.利用斜二側(cè)畫法畫直觀圖時,①三角形的直觀圖還是三角形;②平行四邊形的直觀圖還是平行四邊形;③正方形的直觀圖還是正方形;④菱形的直觀圖還是菱形.其中正確的是

______.答案:由斜二側(cè)直觀圖的畫法法則可知:①三角形的直觀圖還是三角形;正確;②平行四邊形的直觀圖還是平行四邊形;正確.③正方形的直觀圖還是正方形;應該是平行四邊形;所以不正確;④菱形的直觀圖還是菱形.也是平行四邊形,所以不正確.故為:①②30.若點(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:331.直線l經(jīng)過點A(2,-1)和點B(-1,5),其斜率為()

A.-2

B.2

C.-3

D.3答案:A32.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()

A.30°

B.40°

C.80°

D.70°

答案:C33.在repeat語句的一般形式中有“until

A”,其中A是

(

)A.循環(huán)變量B.循環(huán)體C.終止條件D.終止條件為真答案:D解析:此題考查程序語句解:Until標志著直到型循環(huán),直到終止條件為止,因此until后跟的是終止條件為真的語句.答案:D.34.已知點A(-3,8),B(2,4),若y軸上的點P滿足PA的斜率是PB斜率的2倍,則P點的坐標為______.答案:設P(0,y),則∵點P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)35.春天到了,曲曲折折的荷塘上面,彌望的是田田的葉子,已知每一天荷葉覆蓋水面的面積是前一天的2倍,若荷葉20天可以完全長滿池塘水面,當荷葉剛好覆蓋水面面積的一半時,荷葉已生長了()A.10天B.15天C.19天D.20天答案:設荷葉覆蓋水面的初始面積為a,則x天后荷葉覆蓋水面的面積y=a?2x(x∈N+),根據(jù)題意,令2(a?2x)=a?220,解得x=19,故選C.36.設等比數(shù)列{an}的首項為a1,公比為q,則“a1<0且0<q<1”是“對于任意n∈N*都有an+1>an”的

()

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件答案:A37.擲一顆均勻的骰子,若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點、出現(xiàn)偶數(shù)點.若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點”,故為出現(xiàn)偶數(shù)點.38.橢圓焦點在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點,滿足OM⊥ON,求橢圓方程.答案:設橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.39.底面直徑和高都是4cm的圓柱的側(cè)面積為______cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長是2π×2=4π∴圓柱的側(cè)面積是4π×4=16π,故為:16π.40.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm41.某研究小組在一項實驗中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是(

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D42.以下程序輸入2,3,4運行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C43.已知兩曲線參數(shù)方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點坐標為______.答案:曲線參數(shù)方程x=5cosθy=sinθ(0≤θ<π)的直角坐標方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點坐標為(1,255).故為:(1,255).44.在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1。拓展到空間,研究正四面體(四個面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是(

)。答案:3:145.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機會,應選擇的游戲盤的序號______

答案:(1)游戲盤的中獎概率為

38,(2)游戲盤的中獎概率為

14,(3)游戲盤的中獎概率為

26=13,(4)游戲盤的中獎概率為

13,(1)游戲盤的中獎概率最大.故為:(1).46.命題“梯形的兩對角線互相不平分”的命題形式為()A.p或qB.p且qC.非pD.簡單命題答案:記命題p:梯形的兩對角線互相平分,

而原命題是“梯形的兩對角線互相不平分”,是命題p的否定形式

故選C47.用反證法證明“a>b”時,反設正確的是()

A.a(chǎn)>b

B.a(chǎn)<b

C.a(chǎn)=b

D.以上都不對答案:D48.參數(shù)方程(θ為參數(shù))化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D49.過點(-1,3)且平行于直線x-2y+3=0的直線方程為()

A.x-2y+7=0

B.2x+y-1=0

C.x-2y-5=0

D.2x+y-5=0答案:A50.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B第3卷一.綜合題(共50題)1.已知A,B兩點的極坐標為(6,)和(8,),則線段AB中點的直角坐標為()

A.(,-)

B.(-,)

C.(,-)

D.(-,-)答案:D2.設F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點,P是第一象限內(nèi)該橢圓上的一點,且P、F1、F2三點構(gòu)成一直角三角形,則點P的縱坐標為______.答案:由題意,P是第一象限內(nèi)該橢圓上的一點,且P、F1、F2三點構(gòu)成一直角三角形,故可分為兩類:①當∠P為直角時,設P的縱坐標為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當∠PF2F1為直角時,P的橫坐標為3設P的縱坐標為y(y>0),則(3)24+y2=1,∴y=12故為:33

或123.從甲、乙、丙、丁四人中任選兩名代表,甲被選中的概率為

______.答案:由題意:甲、乙、丙、丁四人中任選兩名代表,共有六種情況:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每種情況出現(xiàn)的可能性相等,所以甲被選中的概率為12.故為:12.4.下列在曲線上的點是()

A.

B.

C.

D.答案:D5.直線(t為參數(shù))的傾斜角等于()

A.

B.

C.

D.答案:A6.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C7.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因為函數(shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項的系數(shù)為負?2k-4<0?k<2.故為:C8.盒中裝有形狀、大小完全相同的5個球,其中紅色球3個,黃色球2個.若從中隨機取出2個球,則所取出的2個球顏色不同的概率等于______.答案:從中隨機取出2個球,每個球被取到的可能性相同,是古典概型從中隨機取出2個球,所有的取法共有C52=10所取出的2個球顏色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故為359.

選修1:幾何證明選講

如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;

(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.10.以下命題:

①二直線平行的充要條件是它們的斜率相等;

②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;

③平面內(nèi)到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;

④拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.

其中正確命題的標號是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點距離之和等于常數(shù),如這個常數(shù)正好為兩個點的距離,則動點的軌跡是兩點的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.故④正確.故為:②④.11.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)()

A.均為正值

B.均為負值

C.一正一負

D.至少有一個等于0答案:D12.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C13.把點按向量平移到點,則的圖象按向量平移后的圖象的函數(shù)表達式為(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函數(shù)解析式為14.若點P(-1,3)在圓x2+y2=m2上,則實數(shù)m=______.答案:∵點P(-1,3)在圓x2+y2=m2上,∴點P坐標代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故為:±215.一圓形紙片的圓心為O,點Q是圓內(nèi)異于O點的一個定點,點A是圓周上一動點,把紙片折疊使得點A與點Q重合,然后抹平紙片,折痕CD與OA交于點P,當點A運動時,點P的軌跡為()

A.橢圓

B.雙曲線

C.拋物線

D.圓答案:A16.方程組的解集是(

A.{(-3,0)}

B.{-3,0}

C.(-3,0)

D.{(0,-3)}

答案:A17.已知點P1的球坐標是P1(4,,),P2的柱坐標是P2(2,,1),則|P1P2|=()

A.

B.

C.

D.4答案:A18.對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in)

(n是不小于2的正整數(shù)),對于任意p,q∈1,2,3,…,n,當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于______.答案:由題意知當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,在數(shù)組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對逆序數(shù)對,故為:4.19.(理)在極坐標系中,半徑為1,且圓心在(1,0)的圓的方程為()

A.ρ=sinθ

B.ρ=cosθ

C.ρ=2sinθ

D.ρ=2cosθ答案:D20.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為______.答案:因為A(0,4)和點B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-221.因為樣本是總體的一部分,是由某些個體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實反映了實際情況,但不是統(tǒng)計的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.22.一圓錐側(cè)面展開圖為半圓,平面α與圓錐的軸成45°角,則平面α與該圓錐側(cè)面相交的交線為()A.圓B.拋物線C.雙曲線D.橢圓答案:設圓錐的母線長為R,底面半徑為r,則:πR=2πr,∴R=2r,∴母線與高的夾角的正弦值=rR=12,∴母線與高的夾角是30°.由于平面α與圓錐的軸成45°>30°;則平面α與該圓錐側(cè)面相交的交線為橢圓.故選D.23.實數(shù)系的結(jié)構(gòu)圖如圖所示,其中1、2、3三個方格中的內(nèi)容分別為()

A.有理數(shù)、零、整數(shù)

B.有理數(shù)、整數(shù)、零

C.零、有理數(shù)、整數(shù)

D.整數(shù)、有理數(shù)、零

答案:B24.有一個容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18

[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3

根據(jù)樣本的頻率分布估計,大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個,∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B25.若點A(1,2,3),B(-3,2,7),且AC+BC=0,則點C的坐標為______.答案:設C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)26.如圖是2010年青年歌手大獎賽中,七位評委為甲、乙兩名選手打出的分數(shù)的莖葉圖(其中m為數(shù)字0~9中的

一個),去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關(guān)答案:由題意知去掉一個最高分和一個最低分以后,兩組數(shù)據(jù)都有五個數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B27.已知、分別是的外接圓和內(nèi)切圓;證明:過上的任意一點,都可作一個三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設,分別是的外接圓和內(nèi)切圓半徑,延長交于,則,,延長交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設,則是的中點,連,則,,,所以,由于在角的平分線上,因此點是的內(nèi)心,(這是由于,,而,所以,點是的內(nèi)心).即弦與相切.28.平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點,求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當n=1時,1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設n=k時,k≥1命題成立,即k條滿足題設的直線把平面分成12(k2+k+2)塊,那么當n=k+1時,第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說明當n=k+1時,命題也成立.由(1)(2)知,對一切n∈N*,命題都成立.29.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發(fā)生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.30.用反證法證明命題“三角形中最多只有一個內(nèi)角是鈍角”時,則假設的內(nèi)容是()

A.三角形中有兩個內(nèi)角是鈍角

B.三角形中有三個內(nèi)角是鈍角

C.三角形中至少有兩個內(nèi)角是鈍角

D.三角形中沒有一個內(nèi)角是鈍角答案:C31.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:032.設雙曲線的焦點在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.33.已知兩個力F1,F(xiàn)2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對應向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.34.如圖,已知⊙O的直徑AB=5,C為圓周上一點,BC=4,過點C作⊙O的切線l,過點A作l的垂線AD,垂足為D,則CD=______.

答案:如圖,連接OC,由題意DC是切線可得出OC⊥DC,再過過A作AE⊥OC于E,故有四邊形AECD是矩形,可得AE=CD又⊙O的直徑AB=5,C為圓周上一點,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故為:125.35.設二項式(33x+1x)n的展開式的各項系數(shù)的和為P,所有二項式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對于二項式(33x+1x)n的展開式的所有二項式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.36.如圖,正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F

是棱CD上的動點.

(Ⅰ)試確定點F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當D1E⊥平面AB1F時,求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大?。鸢福海↖)由題意可得:以A為原點,分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標系,不妨設正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論