2023年吉安職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年吉安職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年吉安職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年吉安職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年吉安職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年吉安職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.在直角坐標(biāo)系中,畫出下列向量:

(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;

(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;

(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)2.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(

A.

B.

C.

D.答案:B3.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.4.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-2125.某游泳館出售冬季游泳卡,每張240元,其使用規(guī)定:不記名,每卡每次只限一人,每天只限一次.某班有48名同學(xué),老師打算組織同學(xué)們集體去游泳,除需購買若干張游泳卡外,每次游泳還需包一輛汽車,無論乘坐多少名同學(xué),每次的包車費均為40元.

若使每個同學(xué)游8次,每人最少應(yīng)交多少元錢?答案:設(shè)買x張游泳卡,總開支為y元,則每批去x名同學(xué),共需去48×8x=384x批,總開支又分為:①買卡所需費用240x;②包車所需費用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840當(dāng)且僅當(dāng)x=64x時,即x=8時取等號.∴當(dāng)x=8時,總開支y的最大值為3840元,此時每人最少應(yīng)交384048=80(元).答:若使每個同學(xué)游8次,每人最少應(yīng)交80元錢.6.直線kx-y+1=3k,當(dāng)k變動時,所有直線都通過定點[

]

A.(3,1)

B.(0,1)

C.(0,0)

D.(2,1)答案:A7.若關(guān)于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。8.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經(jīng)過兩點O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點到兩圓的切線長相等答案:D9.下面哪個不是算法的特征()A.抽象性B.精確性C.有窮性D.唯一性答案:根據(jù)算法的概念,可知算法具有抽象性、精確性、有窮性等,同一問題,可以有不同的算法,故選D.10.已知x,y,z滿足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由題意可得P(x,y,z),在以M(3,4,0)為球心,2為半徑的球面上,x2+y2+z2表示原點與點P的距離的平方,顯然當(dāng)O,P,M共線且P在O,M之間時,|OP|最小,此時|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故為:27-102.11.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B12.在四邊形ABCD中,若=+,則()

A.ABCD為矩形

B.ABCD是菱形

C.ABCD是正方形

D.ABCD是平行四邊形答案:D13.點M(4,)化成直角坐標(biāo)為()

A.(2,)

B.(-2,-)

C.(,2)

D.(-,-2)答案:B14.用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的假設(shè)為()

A.a(chǎn),b,c都是奇數(shù)

B.a(chǎn),b,c都是偶數(shù)

C.a(chǎn),b,c中至少有兩個偶數(shù)

D.a(chǎn),b,c中至少有兩個偶數(shù)或都是奇數(shù)答案:D15.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.16.圓錐曲線x=4secθ+1y=3tanθ的焦點坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個單位得到,而雙曲線x216-y29=1的焦點為(-5,0),(5,0)故所求雙曲線的焦點為(-4,0),(6,0)故為:(-4,0),(6,0)17.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}18.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個負(fù)數(shù)”時的假設(shè)為()

A.a(chǎn),b,c,d中至少有一個正數(shù)

B.a(chǎn),b,c,d全為正數(shù)

C.a(chǎn),b,c,d全都大于等于0

D.a(chǎn),b,c,d中至多有一個負(fù)數(shù)答案:C19.已知向量a與向量b的夾角為120°,若向量c=a+b,且a⊥c,則|a||b|的值為______.答案:由題意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故為:1220.若k∈R,則“k>3”是“方程表示雙曲線”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:A21.命題“每一個素數(shù)都是奇數(shù)”的否定是______.答案:原命題“每一個素數(shù)都是奇數(shù)”是一個全稱命題它的否定是一個特稱命題,即“有的素數(shù)不是奇數(shù)”故為:有的素數(shù)不是奇數(shù)22.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C23.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據(jù)題意可知:當(dāng)(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據(jù)勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.24.直線y=33x繞原點逆時針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點個數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點逆時針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點個數(shù)是1.故為:125.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時,0<b<1∴a>b26.(幾何證明選講選選做題)如圖,圓的兩條弦AC、BD相交于P,弧AB、BC、CD、DA的度數(shù)分別為60°、105°、90°、105°,則PAPC=______.答案:連接AB,CD∵弧AB、CD、的度數(shù)分別為60°、90°,∴弦AB的長度等于半徑,弦CD的長度等于半徑的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故為:2227.若A(-1,0,1),B(1,4,7)在直線l上,則直線l的一個方向向量為()

A.(1,2,3)

B.(1,3,2)

C.(2,1,3)

D.(3,2,1)答案:A28.對于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因為f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因為x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.29.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機會,應(yīng)選擇的游戲盤的序號______

答案:(1)游戲盤的中獎概率為

38,(2)游戲盤的中獎概率為

14,(3)游戲盤的中獎概率為

26=13,(4)游戲盤的中獎概率為

13,(1)游戲盤的中獎概率最大.故為:(1).30.已知拋物線C1:x2=2py(p>0)上縱坐標(biāo)為p的點到其焦點的距離為3.

(Ⅰ)求拋物線C1的方程;

(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設(shè)拋物線C1在點A,B處的切線交于點M,

(?。┣簏cM的軌跡C2的方程;

(ⅱ)若點Q為(ⅰ)中曲線C2上的動點,當(dāng)直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.

…(5分)(Ⅱ)(ⅰ)設(shè)過點P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點M的軌跡C2的方程為y=2

(x<-22或x>22).…(10分)(ⅱ)設(shè)Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.

…(15分)31.一個算法的流程圖如圖所示,則輸出S的值為

.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.32.一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開圖,還原為正方體,AB,CD為相鄰表面,且無公共頂點的兩條面上的對角線∴AB與CD所成的角為60°故選D.33.點P(1,2,2)到原點的距離是()

A.9

B.3

C.1

D.5答案:B34.已知二次函數(shù)f(x)=x2+bx+c,f(0)<0,則該函數(shù)零點的個數(shù)為()

A.1

B.2

C.3

D.0答案:B35.已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則的值為()

A.

B.

C.2

D.3

答案:C36.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時,x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.37.已知圖形F上的點A按向量平移前后的坐標(biāo)分別是和,若B()是圖形F上的又一點,則在F按向量平移后得到的圖形F,上B,的坐標(biāo)是(

)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點坐標(biāo)代入可得B,點的坐標(biāo)為.所以選D.38.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(

A.7

B.

C.4

D.12答案:B39.方程組的解集是(

A.{(-3,0)}

B.{-3,0}

C.(-3,0)

D.{(0,-3)}

答案:A40.一圓形紙片的圓心為O點,Q是圓內(nèi)異于O點的一定點,點A是圓周上一點,把紙片折疊使點A與點Q重合,然后抹平紙片,折痕CD與OA交于P點,當(dāng)點A運動時點P的軌跡是______.

①圓

②雙曲線

③拋物線

④橢圓

⑤線段

⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點P到兩個定點O、Q的距離之和等于定長R(R>|OQ|),由橢圓的定義可得,點P的軌跡為橢圓,故為④.41.一個公司共有240名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是______.答案:每個個體被抽到的概率是

20240=112,那么從甲部門抽取的員工人數(shù)是60×112=5,故為:5.42.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為

______.答案:如圖,過雙曲線的頂點A、焦點F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為343.已知f(x)=,若f(x0)>1,則x0的取值范圍是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C44.參數(shù)方程x=3cosθy=4sinθ,(θ為參數(shù))化為普通方程是______.答案:由參數(shù)方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化簡得x29+y216=1,即為橢圓的普通方程故為:x29+y216=145.5位同學(xué)報名參加兩個課外活動小組,每位同學(xué)限報其中的一個小組,則不同的報名方法共有()

A.10種

B.20種

C.25種

D.32種答案:D46.某校有初中學(xué)生1200人,高中學(xué)生900人,教師120人,現(xiàn)用分層抽樣方法從所有師生中抽取一個容量為n的樣本進行調(diào)查,如果從高中學(xué)生中抽取60人,那么n=______.答案:每個個體被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故為:148.47.過點(1,0)且與直線x-2y-2=0平行的直線方程是()

A.x-2y-1=0

B.x-2y+1=0

C.2x+y-2=0

D.x+2y-1=0答案:A48.如果x2+ky2=2表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是

______.答案:根據(jù)題意,x2+ky2=2化為標(biāo)準(zhǔn)形式為x22+y22k=1;根據(jù)題意,其表示焦點在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.49.栽培甲、乙兩種果樹,先要培育成苗,然后再進行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.

(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;

(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.50.a=(2,1),b=(3,4),則向量a在向量b方向上的投影為______.答案:根據(jù)向量在另一個向量上投影的定義向量a在向量b方向上的投影為a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故為:2第2卷一.綜合題(共50題)1.下列函數(shù)中,與函數(shù)y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數(shù)y=x的定義域為R,選項中A,D定義域不是R,是A、D不正確.選項C的對應(yīng)法則不同,C不正確.故選B.2.正態(tài)曲線下、橫軸上,從均值到+∞的面積為______答案:由正態(tài)曲線的對稱性特點知,曲線與x軸之間的面積為1,所以從均數(shù)到的面積為整個面積的一半,即50%.填:0.5.3.設(shè)O是坐標(biāo)原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一個動點,F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p4.命題“對于正數(shù)a,若a>1,則lg

a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個數(shù)為()A.0B.1C.2D.4答案:原命題“對于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.5.在邊長為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+

b=c,∴|a+b+2c|=|3c|=32,故為32.6.在下列條件中,使M與不共線三點A、B、C,一定共面的是

[

]答案:C7.點(1,-1)在圓(x-a)2+(y-a)2=4的內(nèi)部,則a取值范圍是()

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)≠±1答案:A8.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯,輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.9.拋物線y=14x2的焦點坐標(biāo)是______.答案:拋物線y=14x2

即x2=4y,∴p=2,p2=1,故焦點坐標(biāo)是(0,1),故為(0,1).10.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()

A.直線

B.橢圓

C.拋物線

D.雙曲線答案:D11.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()

A.平行

B.重合

C.相交

D.以上答案都不對答案:A12.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.13.如圖,△ABC中,CD=2DB,設(shè)AD=mAB+nAC(m,n為實數(shù)),則m+n=______.答案:∵CD=2DB,∴B、C、D三點共線,由三點共線的向量表示,我們易得AD=23AB+13AC,由平面向量基本定理,我們易得m=23,n=13,∴m+n=1故為:114.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).15.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是

______,過這個圓外一點P(2,3)的該圓的切線方程是

______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個圓外一點P(2,3)的該圓的切線,當(dāng)切線斜率不存在時,顯然x=2符合題意;當(dāng)切線斜率存在時,設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=

1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.16.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此

a+b表示向北偏東30°方向航行2km.故選B.17.點M,N分別是曲線ρsinθ=2和ρ=2cosθ上的動點,則|MN|的最小值是______.答案:∵曲線ρsinθ=2和ρ=2cosθ分別為:y=2和x2+y2=2x,即直線y=2和圓心在(1,0)半徑為1的圓.顯然|MN|的最小值為1.故為:1.18.橢圓x225+y29=1的兩焦點為F1,F(xiàn)2,一直線過F1交橢圓于P、Q,則△PQF2的周長為______.答案:∵a=5,由橢圓第一定義可知△PQF2的周長=4a.∴△PQF2的周長=20.,故為20.19.某工程隊有6項工程需要單獨完成,其中工程乙必須在工程甲完成后才能進行,工程丙必須在工程乙完成后才能進行,有工程丁必須在工程丙完成后立即進行.那么安排這6項工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個工程依次插在由甲、乙、丙丁四個工程之間即可,第一個插入時有4種,第二個插入時共5個空,有5種方法;可得有5×4=20種不同排法.故為:2020.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則

k=______.答案:因為已知x2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.21.如圖,某公司制造一種海上用的“浮球”,它是由兩個半球和一個圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.

(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?

(2)假設(shè)該“浮球”的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元.求該“浮球”的建造費用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元,∴該“浮球”的建造費用為2π×20+π×30=70π≈220元.22.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D23.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()

A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角

B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角

C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角

D.以上都不對答案:B24.已知某離散型隨機變量ξ的數(shù)學(xué)期望Eξ=76,ξ的分布列如下,則a=______.

答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:1325.如圖,在半徑為7的⊙O中,弦AB,CD相交于點P,PA=PB=2,PD=1,則圓心O到弦CD的距離為______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP?1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半徑為7,則圓心O到弦CD的距離為d=r2-(CD2)2=7-(52)2=32.故為:32.26.若(1+2)5=a+b2(a,b為有理數(shù)),則a+b=()A.45B.55C.70D.80答案:解析:由二項式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C27.中,是邊上的中線(如圖).

求證:.

答案:證明見解析解析:取線段所在的直線為軸,點為原點建立直角坐標(biāo)系.設(shè)點的坐標(biāo)為,點的坐標(biāo)為,則點的坐標(biāo)為.可得,,,.,..28.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.

(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;

(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;

(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數(shù)字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,則X≥4包含取出的3個小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個小球上的最大數(shù)字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個小球上的最大數(shù)字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.29.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點,那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點,則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對值等于半徑,F(xiàn)=0,E≠0.故選C.30.如果消息M發(fā)生的概率為P(M),那么消息M所含的信息量為I(M)=log2[P(M)+],若小明在一個有4排8列座位的小型報告廳里聽報告,則發(fā)布的以下4條消費中,信息量最大的是()

A.小明在第4排

B.小明在第5列

C.小明在第4排第5列

D.小明在某一排答案:C31.某游泳館出售冬季游泳卡,每張240元,其使用規(guī)定:不記名,每卡每次只限一人,每天只限一次.某班有48名同學(xué),老師打算組織同學(xué)們集體去游泳,除需購買若干張游泳卡外,每次游泳還需包一輛汽車,無論乘坐多少名同學(xué),每次的包車費均為40元.

若使每個同學(xué)游8次,每人最少應(yīng)交多少元錢?答案:設(shè)買x張游泳卡,總開支為y元,則每批去x名同學(xué),共需去48×8x=384x批,總開支又分為:①買卡所需費用240x;②包車所需費用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840當(dāng)且僅當(dāng)x=64x時,即x=8時取等號.∴當(dāng)x=8時,總開支y的最大值為3840元,此時每人最少應(yīng)交384048=80(元).答:若使每個同學(xué)游8次,每人最少應(yīng)交80元錢.32.設(shè)集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B33.一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個球,則其中含紅球個數(shù)的數(shù)學(xué)期望是

______.答案:設(shè)含紅球個數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時,表示從中取出2個球,其中不含紅球,當(dāng)ξ=1時,表示從中取出2個球,其中1個紅球,1個黃球,當(dāng)ξ=2時,表示從中取出2個球,其中2個紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.34.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2335.已知=2+i,則復(fù)數(shù)z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B36.已知向量a與b的夾角為60°,且|a|=1,|b|=2,那么(a+b)2的值為______.答案:由題意可得a?b=|a|?|b|cos<a

b>=1×2×cos60°=1.∴(a+b)2=a2+b2+2a?b=1+4+2×1=7.故為:7.37.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(

A.7

B.

C.4

D.12答案:B38.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設(shè)點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=139.如圖:已知圓上的弧

AC=

BD,過C點的圓的切線與BA的延長線交于E點,證明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因為AC=BD,所以∠BCD=∠ABC.又因為EC與圓相切于點C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因為∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)40.平面α外一點P到平面α內(nèi)的四邊形的四條邊的距離都相等,且P在α內(nèi)的射影在四邊形內(nèi)部,則四邊形是()

A.梯形

B.圓外切四邊形

C.圓內(nèi)接四邊

D.任意四邊形答案:B41.a=(2,1),b=(3,4),則向量a在向量b方向上的投影為______.答案:根據(jù)向量在另一個向量上投影的定義向量a在向量b方向上的投影為a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故為:242.在極坐標(biāo)系中,點A的極坐標(biāo)為(2,0),直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)+2=0,則點A到直線l的距離為______.答案:由題意得點A(2,0),直線l為

ρ(cosθ+sinθ)+2=0,即

x+y+2=0,∴點A到直線l的距離為

|2+0+2|2=22,故為22.43.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為()

A.3

B.-2

C.2

D.不存在答案:B44.平面向量的夾角為,則等于(

A.

B.3

C.7

D.79答案:A45.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點的極坐標(biāo)為

______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(-1,1),極坐標(biāo)為(2,3π4).故填:(2,3π4).46.已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.

(Ⅰ)求曲線C的方程;

(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA,EB,切點為A、B.

(?。┣笞C:直線AB恒過一定點,并求出該定點的坐標(biāo);

(ⅱ)在直線l上是否存在一點E,使得△ABM為等邊三角形(M點也在直線l上)?若存在,求出點E坐標(biāo),若不存在,請說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(0,2)(10分)(ⅱ)由(?。┲狝B中點N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時,則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時E(±2,-2),當(dāng)a=0時,經(jīng)檢驗不存在滿足條件的點E綜上可得:滿足條件的點E存在,坐標(biāo)為E(±2,-2).(15分)47.若隨機變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C48.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運算性質(zhì)一定成立的所有序號是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.49.某農(nóng)科所種植的甲、乙兩種水稻,連續(xù)六年在面積相等的兩塊稻田中作對比試驗,試驗得出平均產(chǎn)量==415㎏,方差是=794,=958,那么這兩個水稻品種中產(chǎn)量比較穩(wěn)定的是()

A.甲

B.乙

C.甲、乙一樣穩(wěn)定

D.無法確定答案:A50.點O是△ABC內(nèi)一點,若+=-,則是S△AOB:S△AOC=()

A.1

B.

C.

D.答案:A第3卷一.綜合題(共50題)1.已知△ABC,D為AB邊上一點,若AD=2DB,CD=13CA+λCB,則λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故為:23.2.已知隨機變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:D3.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B4.設(shè)向量a,b,c滿足a+b+c=0,a⊥b,且a,b的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則c的模為______.答案:∵向量a,b,c滿足a+b+c=0,a⊥b,∴向量a,b,c構(gòu)成一個直角三角形,如圖∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故為:5.5.某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會的干部競選.

(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;

(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設(shè)“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個男生、2個女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.6.若拋物線y2=2px(p>0)的焦點與雙曲線的右焦點重合,則p的值為()

A.2

B.4

C.8

D.4答案:C7.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是()

A.內(nèi)切

B.相交

C.外切

D.外離答案:B8.△ABC是邊長為1的正三角形,那么△ABC的斜二測平面直觀圖△A′B′C′的面積為(

A.

B.

C.

D.答案:D9.對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是[

]

A.4

B.-4

C.-5

D.6答案:A10.在直角坐標(biāo)系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標(biāo)系中,11.下列命題中,錯誤的是()

A.平行于同一條直線的兩個平面平行

B.平行于同一個平面的兩個平面平行

C.一個平面與兩個平行平面相交,交線平行

D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A12.拋擲兩顆骰子,所得點數(shù)之和為ξ,那么ξ=4表示的隨機試驗結(jié)果是()

A.一顆是3點,一顆是1點

B.兩顆都是2點

C.兩顆都是4點

D.一顆是3點,一顆是1點或兩顆都是2點答案:D13.將命題“正數(shù)a的平方大于零”改寫成“若p,則q”的形式,并寫出它的逆命題、否命題與逆否命題.答案:原命題可以寫成:若a是正數(shù),則a的平方大于零;逆命題:若a的平方大于零,則a是正數(shù);否命題:若a不是正數(shù),則a的平方不大于零;逆否命題:若a的平方不大于零,則a不是正數(shù).14.某校為了研究學(xué)生的性別和對待某一活動的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算K2=7.069,則所得到的統(tǒng)計學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動有關(guān)系”.

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

A.0.1%

B.1%

C.99%

D.99.9%答案:C15.擲一顆均勻的骰子,若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點、出現(xiàn)偶數(shù)點.若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點”,故為出現(xiàn)偶數(shù)點.16.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點重合,則a的坐標(biāo)是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點重合.故選C.17.化簡的結(jié)果是()

A.a(chǎn)2

B.a(chǎn)

C.a(chǎn)

D.a(chǎn)答案:C18.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()

A.4

B.15

C.7

D.3答案:D19.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點,且EB=FB=1.

(1)求二面角C-DE-C1的大??;

(2)求異面直線EC1與FD1所成角的大小;

(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).20.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當(dāng)且僅當(dāng),又,故時不等式取,選C。21.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:222.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數(shù)m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C23.2008年北京奧運會期間,計劃將5名志愿者分配到3個不同的奧運場館參加接待工作,每個場館至少分配一名志愿者的方案種數(shù)為()A.540B.300C.150D.180答案:將5個人分成滿足題意的3組有1,1,3與2,2,1兩種,分成1、1、3時,有C53?A33種分法,分成2、2、1時,有C25C23A22?A33種分法,所以共有C53?A33+C25C23A22?A33=150種分法,故選C.24.集合A={一條邊長為2,一個角為30°的等腰三角形},其中的元素個數(shù)為()A.2B.3C.4D.無數(shù)個答案:由題意,兩腰為2,底角為30°;兩腰為2,頂角為30°;底邊為2,底角為30°;底邊為2,頂角為30°.∴共4個元素,故選C.25.方程組的解集是(

A.{(-3,0)}

B.{-3,0}

C.(-3,0)

D.{(0,-3)}

答案:A26.在統(tǒng)計中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()

A.平均狀態(tài)

B.頻率分布

C.波動大小

D.最大值和最小值答案:C27.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A28.(選做題)在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ=與曲線(t為參數(shù))相較于A,B來兩點,則線段AB的中點的直角坐標(biāo)為(

)。答案:(2.5,2.5)29.將兩個數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()

A.a(chǎn)=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a(chǎn)=cc=bb=a答案:B30.袋子里有大小相同的3個紅球和4個黑球,今從袋子里隨機取球.

(Ⅰ)若有放回地取3次,每次取1個球,求取出1個紅球2個黑球的概率;

(Ⅱ)若無放回地取3次,每次取1個球,

①求在前2次都取出紅球的條件下,第3次取出黑球的概率;

②求取出的紅球數(shù)X

的分布列和數(shù)學(xué)期望.答案:(Ⅰ)記“取出1個紅球2個黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;

所以取出1個紅球2個黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機變量X

的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.31.已知平面直角坐標(biāo)系內(nèi)三點O(0,0),A(1,1),B(4,2)

(Ⅰ)求過O,A,B三點的圓的方程,并指出圓心坐標(biāo)與圓的半徑.

(Ⅱ)求過點C(-1,0)與條件(Ⅰ)的圓相切的直線方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴線段OA中點坐標(biāo)為(12,12),線段OB的中點坐標(biāo)為(2,1),kOA=1,kOB=12,∴線段OA垂直平分線的方程為y-12=-(x-12),線段OB垂直平分線的方程為y-1=12(x-2),聯(lián)立兩方程解得:x=4y=-3,即圓心(4,-3),半徑r=42+(-3)2=5,則所求圓的方程為x2+y2-8x+6y=0,圓心是(4,-3)、半徑r=5;(Ⅱ)分兩種情況考慮:當(dāng)切線方程斜率不存在時,直線x=-1滿足題意;當(dāng)斜率存在時,設(shè)為k,切線方程為y=k(x+1),即kx-y+k=0,∴圓心到切線的距離d=r,即|5k+3|k2+1=5,解得:k=815,此時切線方程為y=815(x+1),綜上,所求切線方程為x=-1或y=815(x+1).32.已知直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長的三角形()

A.是銳角三角形

B.是鈍角三角形

C.是直角三角形

D.不存在答案:C33.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()

A.30°

B.40°

C.80°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論