Google搜索與Inter網(wǎng)的信息檢索_第1頁(yè)
Google搜索與Inter網(wǎng)的信息檢索_第2頁(yè)
Google搜索與Inter網(wǎng)的信息檢索_第3頁(yè)
Google搜索與Inter網(wǎng)的信息檢索_第4頁(yè)
Google搜索與Inter網(wǎng)的信息檢索_第5頁(yè)
已閱讀5頁(yè),還剩85頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Google搜索與

Inter網(wǎng)的信息檢索

馬志明

May16,2008Email:mazm@/member/mazhiming/index.html約有626,000項(xiàng)符合中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院的查詢結(jié)果,以下是第1-100項(xiàng)。

(搜索用時(shí)0.45

秒)Howcangooglemakearankingof626,000pagesin0.45seconds?Amaintaskof

Internet(Web)

InformationRetrieval

=DesignandAnalysisof

SearchEngine(SE)Algorithm

involvingplentyofMathematicsHITS

PageRank1998JonKleinbergCornellUniversity

SergeyBrinandLarryPageStanfordUniversityNevanlinnaPrize(2006)

JonKleinberg

OneofKleinberg‘smostimportantresearchachievementsfocusesontheinternetworkstructureoftheWorldWideWeb.Priorto

Kleinberg‘swork,searchenginesfocusedonlyonthecontentofwebpages,notonthelinkstructure.Kleinbergintroducedtheideaof“authorities”and“hubs”:Anauthorityisawebpagethatcontains

informationonaparticulartopic,andahubisapagethatcontainslinksto

manyauthorities.Zhuzihuthesis.pdfPage

Rank,therankingsystem

usedbytheGooglesearch

engine.

Queryindependentcontentindependent.usingonlythewebgraphstructurePage

Rank,therankingsystemusedbytheGooglesearchengine.

PageRankasaFunctionoftheDampingFactorPaoloBoldiMassimoSantiniSebastianoVignaDSI,UniversitàdegliStudidiMilanoWWW2005paper3.1Choosingthedampingfactor3GeneralBehaviour3.2Gettingcloseto1

canwesomehowcharacterisethepropertiesof?whatmakes

differentfromtheother(infinitelymany,ifPisreducible)limitdistributionsofP?

isthelimitdistributionofPwhenthestartingdistributionisuniform,thatis,Conjecture1

:

Website

provideplentyofinformation:

pagesinthesamewebsitemaysharethesameIP,runonthesamewebserveranddatabaseserver,andbeauthored/maintainedbythesamepersonororganization.

theremightbehighcorrelationsbetweenpagesinthesamewebsite,intermsofcontent,pagelayoutandhyperlinks.

websitescontainhigherdensityofhyperlinksinsidethem(about75%)andlowerdensityofedgesinbetween.HostGraphlosesmuchtransitioninformation

Canasurferjumpfrompage5ofsite1toapageinsite2?From:s06-pc-chairs-email@[mailto:s06-pc-chairs-Sent:2006年4月4日8:36

To:Tie-YanLiu;wangying@;fengg03@;ybao@;mazm@

Subject:[SIGIR2006]YourPaper#191

Title:AggregateRank:BringOrdertoWebSites

Congratulations!!29thAnnual

International

Conferenceon

Research&DevelopmentonInformationRetrieval(SIGIR’06,August6–11,2006,Seattle,Washington,USA).RankingWebsites,

aProbabilisticView

YingBao,GangFeng,Tie-YanLiu,Zhi-MingMa,andYingWang

InternetMathematics,

Volume3(2007),Issue3-WesuggestevaluatingtheimportanceofawebsitewiththemeanfrequencyofvisitingthewebsitefortheMarkovchainontheInternetGraphdescribingrandomsurfing.

WeshowthatthismeanfrequencyisequaltothesumofthePageRanksofallthewebpagesinthatwebsite(henceisreferredasPageRankSum)

Weproposeanovelalgorithm(AggregateRankAlgorithm)basedonthetheoryofstochasticcomplement

tocalculatetherankofawebsite.TheAggregateRankAlgorithmcanapproximatethePageRankSumaccurately,whilethecorrespondingcomputationalcomplexityismuchlowerthanPageRankSum

Byconstructingreturn-timeMarkovchainsrestrictedtoeachwebsite,wedescribealsotheprobabilisticrelationbetweenPageRankandAggregateRank.

ThecomplexityandtheerrorboundofAggregateRankAlgorithmwithexperimentsofrealdadaarediscussedattheendofthepaper.nwebsinNsites,

Thestationarydistribution,knownasthePageRankvector,isgivenbyWemayrewritethestationarydistributionaswithasarowvectoroflength

Wedefinetheone-steptransitionprobabilityfromthewebsite

tothewebsite

bywhereeisandimensionalcolumnvectorofallones

TheN×NmatrixC(α)=(cij(α))isreferredtoasthecouplingmatrix,whoseelementsrepresentthetransitionprobabilitiesbetweenwebsites.ItcanbeprovedthatC(α)isanirreduciblestochasticmatrix,sothatitpossessesauniquestationaryprobabilityvector.Weuseξ(α)todenotethisstationaryprobability,whichcanbegottenfrom

SinceOnecaneasilycheckthatistheuniquesolutionto

WeshallreferastheAggregateRankThatis,theprobabilityofvisitingawebsiteisequaltothesumofPageRanksofallthepagesinthatwebsite.Thisconclusionisconsistenttoourintuition.thetransitionprobabilityfromSitoSjactuallysummarizesallthecasesthattherandomsurferjumpsfromanypageinSitoanypageinSjwithinone-steptransition.Therefore,thetransitioninthisnewHostGraphisinaccordancewiththerealbehavioroftheWebsurfers.Inthisregard,theso-calculatedrankfromthecouplingmatrixC(α)willbemorereasonablethanthosepreviousworks.Let

denotethenumberofvisitingthewebsite

duringthentimes,thatisWehaveAssumeastartingstateinwebsiteA,i.e.Itisclearthatallthevariables

arestoppingtimesforX.WedefineandinductivelyLet

denotethetransitionmatrixofthereturn-timeMarkovchainforsiteSimilarly,wehaveSinceThereforeSupposethatAggregateRank,i.e.thestationarydistributionofisBasedontheabovediscussions,thedirectapproachofcomputingtheAggregateRankξ(α)istoaccumulatePageRankvalues(denotedbyPageRankSum).However,thisapproachisunfeasiblebecausethecomputationofPageRankisnotatrivialtaskwhenthenumberofwebpagesisaslargeasseveralbillions.Therefore,Efficientcomputationbecomesasignificantproblem.1.Dividethen×nmatrix

intoN×NblocksaccordingtotheNsites.AggregateRank

Constructthestochasticmatrixforbychangingthediagonalelementsoftomakeeachrawsumupto1.3.Determinefrom4.Formanapproximation

tothecouplingmatrix

,byevaluating5.Determinethestationarydistributionof

anddenoteit

,i.e.,Experiments

Inourexperiments,thedatacorpusisthebenchmarkdatafortheWebtrackofTREC2003and2004,domainintheyearof2002.Itcontains1,247,753dataset.Thelargestwebsitecontains137,103webpageswhilethesmallestonecontainsonly1page.PerformanceEvaluationofRankingAlgorithmsbasedonKendall'sdistanceSimilaritybetweenPageRankSumandotherthreerankingresults.From:pcchairs@

Sent:Thursday,April03,20089:48AM

DearYutingLiu,BinGao,Tie-YanLiu,YingZhang,ZhimingMa,ShuyuanHe,HangLi

Wearepleasedtoinformyouthatyourpaper

Title:BrowseRank:LettingWebUsersVoteforPageImportance

hasbeenacceptedfororalpresentationasafullpaperandforpublicationasaneightpaperintheproceedingsofthe31stAnnualInternationalACMSIGIR

ConferenceonResearch&DevelopmentonInformationRetrieval.

Congratulations!!BuildingmodelPropertiesofQprocess:Stationarydistribution:

Jumpingprobability:

EmbeddedMarkovchain:isaMarkovchainwiththetransitionprobabilitymatrixMainconclusion1

isthemeanofthestayingtimeonpagei.

Themoreimportantapageis,thelongerstayingtimeonitis.isthemeanofthefirstre-visittimeatpagei.Themoreimportantapageis,thesmallerthere-visittimeis,andthelargerthevisitfrequencyis.Mainconclusion2

isthestationarydistributionofThestationarydistributionofdiscretemodeliseasytocomputePowermethodforLogdataforFurtherquestionsHowaboutinhomogenousprocess?Statisticresultshow:differentperiodoftimepossessesdifferentvisitingfrequency.Poissonprocesseswithdifferentintensity.MarkedpointprocessHyperlinkisnotreliable.Users’realbehaviorshouldbeconsidered.RelevanceRankingManyfeaturesformeasuringrelevanceTermdistribution(anchor,URL,title,body,proximity,….)Recommendation&citation(PageRank,click-throughdata,…)StatisticsorknowledgeextractedfromwebdataQuestionsWhatistheoptimalrankingfunctiontocombinedifferentfeatures(orevidences)?Howtomeasurerelevance?LearningtoRankWhatistheoptimalweightingsforcombiningthevariousfeaturesUsemachinelearningmethodstolearntherankingfunctionHumanrelevancesystem(HRS)Relevanceverificationtests(RVT)Wei-YingMa,MicrosoftResearchAsiaLearningtoRankModelLearningSystemRankingSystemminLoss66Wei-YingMa,MicrosoftResearchAsiaLearningtoRank(Cont)

State-of-the-artalgorithmsforlearningtoranktakethepairwiseapproachRankingSVMRankBoostRankNet(employedatLiveSearch)67BreakdownWei-YingMa,MicrosoftResearchAsialearningtorankThegoaloflearningtorankistoconstructareal-valuedfunctionthatcangeneratearankingonthedocumentsassociatedwiththegivenquery.Thestate-of-the-artmethodstransformsthelearningproblemintothatofclassificationandthenperformsthelearningtask:Foreachquery,itisassumedthattherearetwocategoriesofdocuments:positiveandnegative(representingrelevantandirreverentwithrespecttothequery).Thendocumentpairsareconstructedbetweenpositivedocumentsandnegativedocuments.Inthetrainingprocess,thequeryinformationisactuallyignored.[5]Y.Cao,J.Xu,T.-Y.Liu,H.Li,Y.Huang,andH.-W.Hon.Adaptingrankingsvmtodocumentretrieval.InProc.ofSIGIR’06,pages186–193,2006.[11]T.Qin,T.-Y.Liu,M.-F.Tsai,X.-D.Zhang,andH.Li.Learningtosearchwebpageswithquery-levellossfunctions.TechnicalReportMSR-TR-2006-156,2006.Ascasestudies,weinvestigateRankingSVMandRankBoost.Weshowthatafterintroducing

query-levelnormalization

toitsobjectivefunction,RankingSVMwillhavequery-levelstability.ForRankBoost,thequery-levelstabilitycanbeachievedifweintroduceboth

query-levelnormalizationandregularization

toitsobjectivefunction.Were-representthelearningtorankproblembyintroducingtheconceptof‘query’and‘distributiongivenquery’intoitsmathematicalformulation.Moreprecisely,weassumethatqueriesaredrawnindependentlyfromaqueryspaceQaccordingtoan(unknown)probabilitydistributionItshouldbenotedthatif,thentheboundmakessense.Thisconditioncanbesatisfiedinmanypracticalcases.Ascasestudies,weinvestigateRankingSVMandRankBoost.Weshowthatafterintroducingquery-levelnormalizationtoitsobjectivefunction,RankingSVMwillhavequery-levelstability.ForRankBoost,thequery-levelstabilitycanbeachievedifweintroducebothquery-levelnormalizationandregularizationtoitsobjectivefunction.Theseanalysesagreelargelywithourexperimentsandtheexperimentsin[5]and[11].RankaggregationRankaggregationistocombinerankingresultsofentitiesfrommultiplerankingfunctionsinordertogenerateabetterone.Theindividualrankingfunctionsarereferredtoasbaserankers,orsimplyrankers.Score-basedaggregationRankaggregationcanbeclassifiedintotwocategories[2].Inthefirstcategory,theentitiesinindividualrankinglistsareassignedscoresandtherankaggregationfunctionisassumedtousethescores(denotedasscore-basedaggregation)[11][18][28].order-basedaggregation

Inthesecondcategory,onlytheordersoftheentitiesinindividualrankinglistsa

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論