2023屆福建省師范大學(xué)附中高三一診考試數(shù)學(xué)試卷含解析_第1頁
2023屆福建省師范大學(xué)附中高三一診考試數(shù)學(xué)試卷含解析_第2頁
2023屆福建省師范大學(xué)附中高三一診考試數(shù)學(xué)試卷含解析_第3頁
2023屆福建省師范大學(xué)附中高三一診考試數(shù)學(xué)試卷含解析_第4頁
2023屆福建省師范大學(xué)附中高三一診考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.2.設(shè),滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為()A.60 B.80 C.90 D.1203.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.4.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有5.已知向量,,且,則()A. B. C.1 D.26.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.7.已知復(fù)數(shù),則的虛部是()A. B. C. D.18.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長所需要的天數(shù)是()(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)A. B. C. D.9.已知集合,,則A. B. C. D.10.命題“”的否定是()A. B.C. D.11.第七屆世界軍人運(yùn)動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運(yùn)動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運(yùn)動場地提供服務(wù),要求每個人都要被派出去提供服務(wù),且每個場地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是()A. B. C. D.12.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正方體中,是棱的中點,是側(cè)面上的動點,且平面,記與的軌跡構(gòu)成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個側(cè)面中,與所成的銳二面角相等的側(cè)面共四個.其中正確命題的序號是________.(寫出所有正確命題的序號)14.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15.的展開式中,的系數(shù)為____________.16.圖(1)是第七屆國際數(shù)學(xué)教育大會(ICME-7)的會徽圖案,它是由一串直角三角形演化而成的(如圖(2)),其中,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉(zhuǎn)得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時,求二面角的正弦值.18.(12分)某機(jī)構(gòu)組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機(jī)變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長對小孩的飲食習(xí)慣完全不了解.(?。┣笏麄冊谝惠営螒蛑校瑢λ姆N食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細(xì)計算過程);(2)若有一組小孩和家長進(jìn)行來三輪游戲,三輪的結(jié)果都滿足X<4,請判斷這位家長對小孩飲食習(xí)慣是否了解,說明理由.19.(12分)如圖,設(shè)點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當(dāng)時,(1)求橢圓的方程.(2)當(dāng)時,求的面積.20.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.21.(12分)設(shè)(1)證明:當(dāng)時,;(2)當(dāng)時,求整數(shù)的最大值.(參考數(shù)據(jù):,)22.(10分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.2、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.3、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.4、C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當(dāng)時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當(dāng)時,因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時,一定有,故本說法正確;D:當(dāng)時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.5、A【解析】

根據(jù)向量垂直的坐標(biāo)表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.6、B【解析】

設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.7、C【解析】

化簡復(fù)數(shù),分子分母同時乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.8、C【解析】

由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長度,進(jìn)而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.9、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運(yùn)算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.10、D【解析】

根據(jù)全稱命題的否定是特稱命題,對命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.11、A【解析】

根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地?zé)o關(guān),故甲和乙恰好在同一組的概率是.故選:A.【點睛】本題考查組合的應(yīng)用和概率的計算,屬于基礎(chǔ)題.12、A【解析】

由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則,.故選:A.【點睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①②③④【解析】

取中點,中點,中點,先利用中位線的性質(zhì)判斷點的運(yùn)動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質(zhì)即可判斷;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,進(jìn)而求解;③由,取為中點,則,則即為與平面所成的銳二面角,進(jìn)而求解;④由平行的性質(zhì)及圖形判斷即可.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運(yùn)動軌跡為線段,平面即為平面.①取為中點,因為是等腰三角形,所以,又因為,所以,故①正確;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,當(dāng)點為中點時,直線與直線所成角最小,此時,;當(dāng)點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,,所以③正確;④正方體的各個側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點睛】本題考查直線與平面的空間位置關(guān)系,考查異面直線成角,二面角,考查空間想象能力與轉(zhuǎn)化思想.14、充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.15、16【解析】

要得到的系數(shù),只要求出二項式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16【點睛】此題考查二項式的系數(shù),屬于基礎(chǔ)題.16、【解析】

先求出向量和夾角的余弦值,再由公式即得.【詳解】如圖,過點作的平行線交于點,那么向量和夾角為,,,,,且是直角三角形,,同理得,,.故答案為:【點睛】本題主要考查平面向量數(shù)量積,解題關(guān)鍵是找到向量和的夾角.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應(yīng)最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進(jìn)一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標(biāo)原點,以,,的方向為,,軸的正方向,建立空間直角坐標(biāo)系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.18、(1)(ⅰ)(ⅱ)分布表見解析;(2)理由見解析【解析】

(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.

(ii)根據(jù)(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列.

(2)假設(shè)家長對小孩的飲食習(xí)慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為,這個結(jié)果發(fā)生的可能性很小,從而這位家長對小孩飲食習(xí)慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序為xA,xB,xC,xD為1234的情況,家長的排序有=24種等可能結(jié)果,其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長的排序與對應(yīng)位置的數(shù)字完全不同的概率P=.基小孩對四種食物的排序是其他情況,只需將角標(biāo)A,B,C,D按照小孩的順序調(diào)整即可,假設(shè)小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實這樣處理后與第一種情況的計算結(jié)果是一致的,∴他們在一輪游戲中,對四種食物排出的序號完全不同的概率為.(ii)根據(jù)(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,列出所有情況,分別計算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長對小孩的飲食習(xí)慣比較了解.理由如下:假設(shè)家長對小孩的飲食習(xí)慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為()3=,這個結(jié)果發(fā)生的可能性很小,∴這位家長對小孩飲食習(xí)慣比較了解.【點睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.19、(1)(2)【解析】

(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因為直線過點,且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因為,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為.(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,則點到右準(zhǔn)線的距離為,所以,即,把代入橢圓方程得,,因為直線的斜率,所以,因為直線經(jīng)過和,所以直線的方程為,聯(lián)立方程組得,解得或,所以,所以的面積.【點睛】本題主要考查直線和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計算,意在考查學(xué)生對這些知識的掌握水平和分析推理計算能力.20、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調(diào)遞減,因為,所以在上增,在單調(diào)遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.21、(1)證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論