




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.02.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.3.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.4.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.5.已知,則()A. B. C. D.6.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.7.設(shè)點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.8.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.9.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.10.已知變量,滿足不等式組,則的最小值為()A. B. C. D.11.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.6312.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.14.已知向量,,,若,則______.15.(5分)已知為實數(shù),向量,,且,則____________.16.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.18.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、、滿足,求證:.19.(12分)某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機抽取件產(chǎn)品,統(tǒng)計其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.(1)求每件產(chǎn)品的平均銷售利潤;(2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.表中,,,.根據(jù)散點圖判斷,可以作為年銷售量(萬件)關(guān)于年營銷費用(萬元)的回歸方程.①求關(guān)于的回歸方程;②用所求的回歸方程估計該企業(yè)每年應(yīng)投入多少營銷費,才能使得該企業(yè)的年收益的預(yù)報值達(dá)到最大?(收益銷售利潤營銷費用,?。└剑簩τ谝唤M數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為,.20.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.21.(12分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.22.(10分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達(dá)哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達(dá)哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.2.C【解析】
當(dāng)時,最多一個零點;當(dāng)時,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時,,得;最多一個零點;當(dāng)時,,,當(dāng),即時,,在,上遞增,最多一個零點.不合題意;當(dāng),即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.3.A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數(shù),再求出四個面中任選2個的方法數(shù),從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個數(shù).4.B【解析】
根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.5.D【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應(yīng)用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.6.D【解析】
按照復(fù)數(shù)的運算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點睛】本題考查復(fù)數(shù)的四則運算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運算能力,屬于基礎(chǔ)題.7.B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.8.B【解析】
作出圖形,設(shè)平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點為的中點,同理可得出點為的中點,結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.9.A【解析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復(fù)數(shù)的除法運算,考查學(xué)生運算能力,是一道容易題.10.B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點,,在處有最小值,最小值為.故選:B.【點睛】本題主要考查簡單的線性規(guī)劃,運用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.11.B【解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.12.A【解析】
函數(shù)的零點就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復(fù)合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.14.-1【解析】
由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標(biāo)運算可得結(jié)論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標(biāo)運算.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.15.5【解析】
由,,且,得,解得,則,則.16.【解析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標(biāo)原點,建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并表示出,由空間向量數(shù)量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運算求得兩個平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,∵,,點為棱的中點.∴,,,,,,.(2),設(shè)平面的法向量為.則,代入可得,令解得,即,設(shè)直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點在棱上,設(shè),故,由,得,解得,即,設(shè)平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點睛】本題考查了空間向量的綜合應(yīng)用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計算量較大,屬于中檔題.18.(1)(2)證明見解析【解析】
(1)采用零點分段法:、、,由此求解出不等式的解集;(2)先根據(jù)絕對值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當(dāng)時,不等式為,解得當(dāng)時,不等式為,解得當(dāng)時,不等式為,解得∴原不等式的解集為(2)當(dāng)且僅當(dāng)即時取等號,∴,∴∵,∴,∴(當(dāng)且僅當(dāng)時取“”)同理可得,∴∴(當(dāng)且僅當(dāng)時取“”)【點睛】本題考查絕對值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見的絕對值不等式解法:零點分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時,注意說明取等號的條件.19.(1)元.(2)①②萬元【解析】
(1)每件產(chǎn)品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率,從而可得的概率分布列,依期望公式計算出期望即為平均銷售利潤;(2)①對取自然對數(shù),得,令,,,則,這就是線性回歸方程,由所給公式數(shù)據(jù)計算出系數(shù),得線性回歸方程,從而可求得;②求出收益,可設(shè)換元后用導(dǎo)數(shù)求出最大值.【詳解】解:(1)設(shè)每件產(chǎn)品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產(chǎn)品為劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率分別為、、.所以;;.所以的分布列為所以(元).即每件產(chǎn)品的平均銷售利潤為元.(2)①由,得,令,,,則,由表中數(shù)據(jù)可得,則,所以,即,因為取,所以,故所求的回歸方程為.②設(shè)年收益為萬元,則令,則,,當(dāng)時,,當(dāng)時,,所以當(dāng),即時,有最大值.即該企業(yè)每年應(yīng)該投入萬元營銷費,能使得該企業(yè)的年收益的預(yù)報值達(dá)到最大,最大收益為萬元.【點睛】本題考查頻率分布直方圖,考查隨機變量概率分布列與期
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北京購房貸款合同范本
- 2025湖北宜昌將提取公積金條款納入勞動合同
- 2025聘請小說作家合同范本
- 2025國際貨物買賣合同協(xié)議書范本 詳細(xì)版
- 傳感器行業(yè)未來發(fā)展與市場潛力深度分析
- 廣場及公園安保工作計劃
- 創(chuàng)新項目實施計劃
- 明確責(zé)任與任務(wù)的個人職能計劃
- 2024網(wǎng)絡(luò)編輯師考試策略與試題及答案
- 農(nóng)村畜牧經(jīng)濟的轉(zhuǎn)型升級試題及答案
- 《大學(xué)英語》課程思政
- 中藥湯劑課件完整版
- 如何做好我國新藥研發(fā)的市場篩選
- 《神經(jīng)外科常用藥物》
- 八年級物理下學(xué)期期中考試卷
- 厄爾尼諾和拉尼娜現(xiàn)象課件
- 鋼結(jié)構(gòu)相關(guān)施工質(zhì)量通病及預(yù)防措施
- TDASI 017-2021 門窗填縫砂漿
- 織碼匠文字材料語言源碼目錄
- 葡萄酒購銷合同范本(2篇)
- GB/T 37869.10-2019玻璃容器真空凸緣瓶口第10部分:六旋77普通規(guī)格
評論
0/150
提交評論