2023學年山東青島嶗山區(qū)中考數(shù)學考試模擬沖刺卷含解析及點睛_第1頁
2023學年山東青島嶗山區(qū)中考數(shù)學考試模擬沖刺卷含解析及點睛_第2頁
2023學年山東青島嶗山區(qū)中考數(shù)學考試模擬沖刺卷含解析及點睛_第3頁
2023學年山東青島嶗山區(qū)中考數(shù)學考試模擬沖刺卷含解析及點睛_第4頁
2023學年山東青島嶗山區(qū)中考數(shù)學考試模擬沖刺卷含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα2.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°3.為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④4.中華人民共和國國家統(tǒng)計局網(wǎng)站公布,2016年國內生產總值約為74300億元,將74300億用科學計數(shù)法可以表示為()A. B. C. D.5.下列圖形中,哪一個是圓錐的側面展開圖?A. B. C. D.6.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.7.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個8.一元二次方程的根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷9.下列計算正確的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a?a2=a210.如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為1.若AA'=1,則A'D等于()A.2 B.3 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,AB=4,AD=3,矩形內部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.12.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.13.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.14.計算a3÷a2?a的結果等于_____.15.觀察下列圖形,若第1個圖形中陰影部分的面積為1,第2個圖形中陰影部分的面積為,第3個圖形中陰影部分的面積為,第4個圖形中陰影部分的面積為,…則第n個圖形中陰影部分的面積為_____.(用字母n表示)16.若|a|=2016,則a=___________.三、解答題(共8題,共72分)17.(8分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).18.(8分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)圖象直接寫出y1>y2時,x的取值范圍.19.(8分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數(shù)關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?20.(8分)在平面直角坐標系xOy中,將拋物線(m≠0)向右平移個單位長度后得到拋物線G2,點A是拋物線G2的頂點.(1)直接寫出點A的坐標;(2)過點(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點.①當∠BAC=90°時.求拋物線G2的表達式;②若60°<∠BAC<120°,直接寫出m的取值范圍.21.(8分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.(1)問題發(fā)現(xiàn)①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉過程中,BE的最大值為;②當△ADE旋轉至B、D、E三點共線時,線段CD的長為.22.(10分)為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為度;(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.23.(12分)為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數(shù):.李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?24.武漢二中廣雅中學為了進一步改進本校九年級數(shù)學教學,提高學生學習數(shù)學的興趣.校教務處在九年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調查:我們從所調查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:“非常喜歡”、“比較喜歡”、“不太喜歡”、“很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計.現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)以上提供的信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是,圖②中所在扇形對應的圓心角是;(3)若該校九年級共有960名學生,請你估算該年級學生中對數(shù)學學習“不太喜歡”的有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)銳角三角函數(shù)的定義可得結論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.2、B【解析】分析:由等腰直角三角形的性質和平行線的性質求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質、等腰直角三角形的性質;熟練掌握等腰直角三角形的性質,由平行線的性質求出∠ACD的度數(shù)是解決問題的關鍵.3、B【解析】

利用條形統(tǒng)計圖結合中位數(shù)和中位數(shù)的定義分別分析得出答案.【詳解】①由條形統(tǒng)計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),

×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;

②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),

∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;

③∵5萬個數(shù)據(jù)的中間是第25000和25001的平均數(shù),

∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項錯誤;

④該市居民家庭年用水量為110m1有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,

故選B.【點睛】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計圖獲取正確信息是解題關鍵.4、D【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:74300億=7.43×1012,

故選:D.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、B【解析】

根據(jù)圓錐的側面展開圖的特點作答.【詳解】A選項:是長方體展開圖.B選項:是圓錐展開圖.C選項:是棱錐展開圖.D選項:是正方體展開圖.故選B.【點睛】考查了幾何體的展開圖,注意圓錐的側面展開圖是扇形.6、B【解析】

根據(jù)網(wǎng)格的特點求出三角形的三邊,再根據(jù)相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.7、C【解析】

根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個有關m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.8、A【解析】

把a=1,b=-1,c=-1,代入,然后計算,最后根據(jù)計算結果判斷方程根的情況.【詳解】方程有兩個不相等的實數(shù)根.故選A.【點睛】本題考查根的判別式,把a=1,b=-1,c=-1,代入計算是解題的突破口.9、C【解析】

解:選項A,原式=;選項B,原式=a3;選項C,原式=-2a+2=2-2a;選項D,原式=故選C10、A【解析】分析:由S△ABC=9、S△A′EF=1且AD為BC邊的中線知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根據(jù)△DA′E∽△DAB知,據(jù)此求解可得.詳解:如圖,∵S△ABC=9、S△A′EF=1,且AD為BC邊的中線,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵將△ABC沿BC邊上的中線AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,則,即,解得A′D=2或A′D=-(舍),故選A.點睛:本題主要平移的性質,解題的關鍵是熟練掌握平移變換的性質與三角形中線的性質、相似三角形的判定與性質等知識點.二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質,勾股定理,兩點之間線段最短的性質.得出動點P所在的位置是解題的關鍵.12、1.【解析】過點B作BE⊥x軸于點E,根據(jù)D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.13、【解析】

根據(jù)上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【點睛】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達到抵消的目的.14、a1【解析】

根據(jù)同底數(shù)冪的除法法則和同底數(shù)冪乘法法則進行計算即可.【詳解】解:原式=a3﹣1+1=a1.故答案為a1.【點睛】本題考查了同底數(shù)冪的乘除法,關鍵是掌握計算法則.15、n﹣1(n為整數(shù))【解析】試題分析:觀察圖形可得,第1個圖形中陰影部分的面積=()0=1;第2個圖形中陰影部分的面積=()1=;第3個圖形中陰影部分的面積=()2=;第4個圖形中陰影部分的面積=()3=;…根據(jù)此規(guī)律可得第n個圖形中陰影部分的面積=()n-1(n為整數(shù))?考點:圖形規(guī)律探究題.16、±1【解析】試題分析:根據(jù)零指數(shù)冪的性質(),可知|a|=1,座椅可知a=±1.三、解答題(共8題,共72分)17、39米【解析】

過點A作AE⊥CD,垂足為點E,在Rt△ADE中,利用三角函數(shù)求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點A作AE⊥CD,垂足為點E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.18、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【解析】

(1)把點A坐標代入反比例函數(shù)求出k的值,也就求出了反比例函數(shù)解析式,再把點B的坐標代入反比例函數(shù)解析式求出a的值,得到點B的坐標,然后利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)找出直線在一次函數(shù)圖形的上方的自變量x的取值即可.【詳解】解:(1)把點A(﹣1,6)代入反比例函數(shù)(m≠0)得:m=﹣1×6=﹣6,∴.將B(a,﹣2)代入得:,a=1,∴B(1,﹣2),將A(﹣1,6),B(1,﹣2)代入一次函數(shù)y1=kx+b得:,∴,∴;(2)由函數(shù)圖象可得:x<﹣1或0<x<1.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結合思想解題是本題的關鍵.19、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當AD為菱形的邊時,可得P1(3,0),P3(6,3),當AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).【點睛】本題考查四邊形綜合題、等邊三角形的性質和判定、菱形的判定和性質、二次函數(shù)的性質等知識,解題的關鍵是學會構建二次函數(shù)解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.20、(1)(,2);(2)①y=(x-)2+2;②【解析】

(1)先求出平移后是拋物線G2的函數(shù)解析式,即可求得點A的坐標;(2)①由(1)可知G2的表達式,首先求出AD的值,利用等腰直角的性質得出BD=AD=,從而求出點B的坐標,代入即可得解;②分別求出當∠BAC=60°時,當∠BAC=120°時m的值,即可得出m的取值范圍.【詳解】(1)∵將拋物線G1:y=mx2+2(m≠0)向右平移個單位長度后得到拋物線G2,∴拋物線G2:y=m(x-)2+2,∵點A是拋物線G2的頂點.∴點A的坐標為(,2).(2)①設拋物線對稱軸與直線l交于點D,如圖1所示.∵點A是拋物線頂點,∴AB=AC.∵∠BAC=90°,∴△ABC為等腰直角三角形,∴CD=AD=,∴點C的坐標為(2,).∵點C在拋物線G2上,∴=m(2-)2+2,解得:.②依照題意畫出圖形,如圖2所示.同理:當∠BAC=60°時,點C的坐標為(+1,);當∠BAC=120°時,點C的坐標為(+3,).∵60°<∠BAC<120°,∴點(+1,)在拋物線G2下方,點(+3,)在拋物線G2上方,∴,解得:.【點睛】此題考查平移中的坐標變換,二次函數(shù)的性質,待定系數(shù)法求二次函數(shù)的解析式,等腰直角三角形的判定和性質,等邊三角形的判定和性質,熟練掌握坐標系中交點坐標的計算方法是解本題的關鍵,利用參數(shù)頂點坐標和交點坐標是解本題的難點.21、(1)①;(2)無變化,證明見解析;(3)①2+2+1或﹣1.【解析】

(1)①先判斷出DE∥CB,進而得出比例式,代值即可得出結論;②先得出DE∥BC,即可得出,,再用比例的性質即可得出結論;(2)先∠CAD=∠BAE,進而判斷出△ADC∽△AEB即可得出結論;(3)分點D在BE的延長線上和點D在BE上,先利用勾股定理求出BD,再借助(2)結論即可得出CD.【詳解】解:(1)①當θ=0°時,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當θ=180°時,如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當0°≤θ<360°時,的大小沒有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當點E在BA的延長線時,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當點E在BD上時,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據(jù)勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當點D在BE的延長線上時,在Rt△ADB中,AD=,AB=2,根據(jù)勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案為+1或﹣1.【點睛】此題是相似形綜合題,主要考查了等腰直角三角形的性質和判定,勾股定理,相似三角形的判定和性質,比例的基本性質及分類討論的數(shù)學思想,解(1)的關鍵是得出DE∥BC,解(2)的關鍵是判斷出△ADC∽△AEB,解(3)關鍵是作出圖形求出BD,是一道中等難度的題目.22、(1)2、45、20;(2)72;(3)【解析】分析:(1)根據(jù)A等次人數(shù)及其百分比求得總人數(shù),總人數(shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總人數(shù)可得b、c的值;(2)用360°乘以C等次百分比可得;(3)畫出樹狀圖,由概率公式即可得出答案.詳解:(1)本次調查的總人數(shù)為12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為360°×20%=72°,(3)畫樹狀圖,如圖所示:共有12個可能的結果,選中的兩名同學恰好是甲、乙的結果有2個,故P(選中的兩名同學恰好是甲、乙)=.點睛:此題主要考查了列表法與樹狀圖法,以及扇形統(tǒng)計圖、條形統(tǒng)計圖的應用,要熟練掌握.23、(1)政府這個月為他承擔的總差價為644元;(2)當銷售單價定為34元時,每月可獲得最大利潤144元;(3)銷售單價定為25元時,政

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論