2023屆廣東省惠州市惠陽區(qū)中考押題數學預測卷含解析及點睛_第1頁
2023屆廣東省惠州市惠陽區(qū)中考押題數學預測卷含解析及點睛_第2頁
2023屆廣東省惠州市惠陽區(qū)中考押題數學預測卷含解析及點睛_第3頁
2023屆廣東省惠州市惠陽區(qū)中考押題數學預測卷含解析及點睛_第4頁
2023屆廣東省惠州市惠陽區(qū)中考押題數學預測卷含解析及點睛_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.按一定規(guī)律排列的一列數依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數中的第100個數是()A.﹣ B. C. D.2.若正多邊形的一個內角是150°,則該正多邊形的邊數是()A.6B.12C.16D.183.已知a<1,點A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數圖象上的三點,則下列結論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x14.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.5.已知一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.26.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標為(1,0),則下列結論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結論有()個.A.3 B.4 C.2 D.17.﹣23的相反數是()A.﹣8 B.8 C.﹣6 D.68.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a≥ B.a> C.a≤ D.a>9.已知一次函數y=kx+b的圖象如圖,那么正比例函數y=kx和反比例函數y=在同一坐標系中的圖象的形狀大致是()A. B.C. D.10.我國古代數學家劉徽創(chuàng)立的“割圓術”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術”,將π的值精確到小數點后第七位,這一結果領先世界一千多年,“割圓術”的第一步是計算半徑為1的圓內接正六邊形的面積S6,則S6的值為()A. B.2 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如下圖,在直徑AB的半圓O中,弦AC、BD相交于點E,EC=2,BE=1.則cos∠BEC=________.12.有一個計算程序,每次運算都是把一個數先乘2,再除以它與1的和,多次重復進行這種運算的過程如下:則第n次的運算結果是____________(用含字母x和n的代數式表示).13.計算:3﹣(﹣2)=____.14.如圖,△ABC中,點D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是_____.15.閱讀理解:引入新數i,新數i滿足分配律、結合律、交換律,已知i2=﹣1,那么(1+i)?(1﹣i)的平方根是_____.16.分解因式:a3-12a2+36a=______.17.同時拋擲兩枚質地均勻的骰子,則事件“兩枚骰子的點數和小于8且為偶數”的概率是.三、解答題(共7小題,滿分69分)18.(10分)一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為S(km),y1,y2與x的函數關系圖象如圖①所示,S與x的函數關系圖象如圖②所示:(1)圖中的a=______,b=______.(2)求快車在行駛的過程中S關于x的函數關系式.(3)直接寫出兩車出發(fā)多長時間相距200km?19.(5分)某市正在舉行文化藝術節(jié)活動,一商店抓住商機,決定購進甲,乙兩種藝術節(jié)紀念品.若購進甲種紀念品4件,乙種紀念品3件,需要550元,若購進甲種紀念品5件,乙種紀念品6件,需要800元.(1)求購進甲、乙兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共80件,其中甲種紀念品的數量不少于60件.考慮到資金周轉,用于購買這80件紀念品的資金不能超過7100元,那么該商店共有幾種進貨方案7(3)若銷售每件甲種紀含晶可獲利潤20元,每件乙種紀念品可獲利潤30元.在(2)中的各種進貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?20.(8分)(問題發(fā)現)(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.21.(10分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經過的路程為s.當β=45°時,若△APQ是“中邊三角形”,試求的值.22.(10分)某商場將每件進價為80元的某種商品按每件100元出售,一天可售出100件.后來經過市場調查,發(fā)現這種商品單價每降低1元,其銷量可增加10件.(1)若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.求出y與x之間的函數關系式,并求當x取何值時,商場獲利潤最大?23.(12分)((1)計算:;(2)先化簡,再求值:,其中a=.24.(14分)已知C為線段上一點,關于x的兩個方程與的解分別為線段的長,當時,求線段的長;若C為線段的三等分點,求m的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據按一定規(guī)律排列的一列數依次為:,1,,,,…,可知符號規(guī)律為奇數項為負,偶數項為正;分母為3、7、9、……,型;分子為型,可得第100個數為.【詳解】按一定規(guī)律排列的一列數依次為:,1,,,,…,按此規(guī)律,奇數項為負,偶數項為正,分母為3、7、9、……,型;分子為型,可得第n個數為,∴當時,這個數為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉化為一般規(guī)律是解決本題的關鍵.2、B【解析】設多邊形的邊數為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.3、B【解析】

根據的圖象上的三點,把三點代入可以得到x1=﹣,x1=,x3=,在根據a的大小即可解題【詳解】解:∵點A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數圖象上的三點,∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【點睛】此題主要考查一次函數圖象與系數的關系,解題關鍵在于把三點代入,在根據a的大小來判斷4、A【解析】試題解析:試題解析:根據軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內,如果把一個圖形繞某一點旋轉,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉點,就叫做對稱中心.5、C【解析】

根據題意得出旋轉后的函數解析式為y=-x-1,然后根據解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【詳解】∵一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),∴設旋轉后的函數解析式為y=﹣x﹣1,在一次函數y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數y=﹣x+2與x軸交點為(4,1).一次函數y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數圖象與幾何變換,解題的關鍵是求出旋轉后的函數解析式.本題屬于基礎題,難度不大.6、A【解析】

利用拋物線的對稱性可確定A點坐標為(-3,0),則可對①進行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進行判斷;由拋物線開口向下得到a>0,再利用對稱軸方程得到b=2a>0,則可對③進行判斷;利用x=-1時,y<0,即a-b+c<0和a>0可對④進行判斷.【詳解】∵拋物線的對稱軸為直線x=-1,點B的坐標為(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正確;∵拋物線與x軸有2個交點,∴△=b2-4ac>0,所以②正確;∵拋物線開口向下,∴a>0,∵拋物線的對稱軸為直線x=-=-1,∴b=2a>0,∴ab>0,所以③錯誤;∵x=-1時,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正確.故選A.【點睛】本題考查了拋物線與x軸的交點:對于二次函數y=ax2+bx+c(a,b,c是常數,a≠0),△=b2-4ac決定拋物線與x軸的交點個數:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.也考查了二次函數的性質.7、B【解析】∵=﹣8,﹣8的相反數是8,∴的相反數是8,故選B.8、B【解析】

方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【詳解】①+②得:解得:故選:B.【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數的值.9、C【解析】試題分析:如圖所示,由一次函數y=kx+b的圖象經過第一、三、四象限,可得k>1,b<1.因此可知正比例函數y=kx的圖象經過第一、三象限,反比例函數y=的圖象經過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數的圖象;2、一次函數的圖象;3、一次函數圖象與系數的關系10、C【解析】

根據題意畫出圖形,結合圖形求出單位圓的內接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點睛】本題考查了已知圓的半徑求其內接正六邊形面積的應用問題,關鍵是根據正三角形的面積,正n邊形的性質解答.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:連接BC,則∠BCE=90°,由余弦的定義求解.詳解:連接BC,根據圓周角定理得,∠BCE=90°,所以cos∠BEC=.故答案為.點睛:本題考查了圓周角定理的余弦的定義,求一個銳角的余弦時,需要把這個銳角放到直角三角形中,再根據余弦的定義求解,而圓中直徑所對的圓周角是直角.12、【解析】試題分析:根據題意得;;;根據以上規(guī)律可得:=.考點:規(guī)律題.13、2+2【解析】

根據平面向量的加法法則計算即可.【詳解】3﹣(﹣2)=3﹣+2=2+2,故答案為:2+2,【點睛】本題考查平面向量,熟練掌握平面向量的加法法則是解題的關鍵.14、【解析】

由△ABC中,點D、E分別在邊AB、BC上,DE∥AC,根據平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.【點睛】考查了平行線分線段成比例定理,解題時注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.15、2【解析】

根據平方根的定義進行計算即可.【詳解】.解:∵i2=﹣1,∴(1+i)?(1﹣i)=1﹣i2=2,∴(1+i)?(1﹣i)的平方根是±,故答案為±.【點睛】本題考查平方根以及實數的運算,解題關鍵掌握平方根的定義.16、a(a-6)2【解析】

原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.17、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結果數,其中“兩枚骰子的點數和小于8且為偶數”的結果數為9,所以“兩枚骰子的點數和小于8且為偶數”的概率==.故答案為.考點:列表法與樹狀圖法.三、解答題(共7小題,滿分69分)18、(1)a=6,b=;(2);(3)或5h【解析】

(1)根據S與x之間的函數關系式可以得到當位于C點時,兩人之間的距離增加變緩,此時快車到站,指出此時a的值即可,求得a的值后求出兩車相遇時的時間即為b的值;(2)根據函數的圖像可以得到A、B、C、D的點的坐標,利用待定系數法求得函數的解析式即可.(3)分兩車相遇前和兩車相遇后兩種情況討論,當相遇前令s=200即可求得x的值.【詳解】解:(1)由s與x之間的函數的圖像可知:當位于C點時,兩車之間的距離增加變緩,由此可以得到a=6,∵快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,∴;(2)∵從函數的圖象上可以得到A、B、C、D點的坐標分別為:(0,600)、(,0)、(6,360)、(10,600),∴設線段AB所在直線解析式為:S=kx+b,∴解得:k=-160,b=600,設線段BC所在的直線的解析式為:S=kx+b,∴解得:k=160,b=-600,設直線CD的解析式為:S=kx+b,解得:k=60,b=0∴(3)當兩車相遇前相距200km,此時:S=-160x+600=200,解得:,當兩車相遇后相距200km,此時:S=160x-600=200,解得:x=5,∴或5時兩車相距200千米【點睛】本題考查了一次函數的綜合知識,特別是本題中涉及到了分段函數的知識,解題時主要自變量的取值范圍.19、(1)購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.(2)有三種進貨方案.方案一:甲種紀念品60件,乙種紀念品20件;方案二:甲種紀念品61件,乙種紀念品19件;方案三:甲種紀念品1件,乙種紀念品18件.(3)若全部銷售完,方案一獲利最大,最大利潤是1800元.【解析】分析:(1)設購進甲種紀念品每件價格為x元,乙種紀念幣每件價格為y元,根據題意得出關于x和y的二元一次方程組,解方程組即可得出結論;(2)設購進甲種紀念品a件,根據題意列出關于x的一元一次不等式,解不等式得出a的取值范圍,即可得出結論;(3)找出總利潤關于購買甲種紀念品a件的函數關系式,由函數的增減性確定總利潤取最值時a的值,從而得出結論.詳解:(1)設購進甲種紀念品每件需x元,購進乙種紀念品每件需y元.由題意得:,解得:答:購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.(2)設購進甲種紀念品a(a≥60)件,則購進乙種紀念品(80﹣a)件.由題意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三種進貨方案.方案一:甲種紀念品60件,乙種紀念品20件;方案二:甲種紀念品61件,乙種紀念品19件;方案三:甲種紀念品1件,乙種紀念品18件.(3)設利潤為W,則W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函數,﹣10<0,W隨a的增大而減?。援攁最小時,W最大.此時W=﹣10×60+2400=1800答:若全部銷售完,方案一獲利最大,最大利潤是1800元.點睛:本題考查了二元一次方程組的應用,一元一次不等式的應用,一次函數的應用,找到相應的數量關系是解決問題的關鍵,注意第二問應求整數解,要求學生能夠運用所學知識解決實際問題.20、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】

(1)依據點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,②以點A為旋轉中心將正方形ABCD順時針旋轉60°,分別依據旋轉的性質以及勾股定理,即可得到結論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉中心將正方形ABCD順時針旋轉60°,如圖所示:過B作BF⊥AD'于F,旋轉可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質,矩形的判定,旋轉的性質,線段垂直平分線的性質以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構造直角三角形,依據勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.21、tanA=;綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【解析】

(1)由AC和BD是“對應邊”,可得AC=BD,設AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,可得AC是QP的垂直平分線.可求得△AEF∽△CEP,=,分兩種情況:當底邊PQ與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【詳解】解:[理解]∵AC和BD是“對應邊”,∴AC=BD,設AC=2x,則CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,當點P在AB上時,△APQ是等腰直角三角形,不可能是“中邊三角形”,如圖2,當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分線,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分兩種情況:當底邊PQ與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,如圖3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【點睛】本題是一道相似形綜合運用的試題,考查了相似三角形的判定及性質的運用,勾股定理的運用,等腰直角三角形的性質的運用,等腰三角形的性質的運用,銳角三角形函數值的運用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論