版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023中考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.2.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:23.如圖,A、B、C、D是⊙O上的四點,BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°4.實數(shù)在數(shù)軸上的點的位置如圖所示,則下列不等關(guān)系正確的是()A.a(chǎn)+b>0 B.a(chǎn)-b<0 C.<0 D.>5.如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,
將剪下的扇形作為一個圓錐側(cè)面,如果圓錐的高為,則這塊圓形紙片的直徑為(
)A.12cm B.20cm C.24cm D.28cm6.設(shè)x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.167.如圖,是直角三角形,,,點在反比例函數(shù)的圖象上.若點在反比例函數(shù)的圖象上,則的值為()A.2 B.-2 C.4 D.-48.衡陽市某生態(tài)示范園計劃種植一批梨樹,原計劃總產(chǎn)值30萬千克,為了滿足市場需求,現(xiàn)決定改良梨樹品種,改良后平均每畝產(chǎn)量是原來的1.5倍,總產(chǎn)量比原計劃增加了6萬千克,種植畝數(shù)減少了10畝,則原來平均每畝產(chǎn)量是多少萬千克?設(shè)原來平均每畝產(chǎn)量為x萬千克,根據(jù)題意,列方程為()A.﹣=10 B.﹣=10C.﹣=10 D.+=109.下列運算正確的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a(chǎn)6÷a3=a210.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在點A′的位置,若OB=,tan∠BOC=,則點A′的坐標(biāo)為_____.12.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.13.如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,4),則點B4的坐標(biāo)為_____,點B2017的坐標(biāo)為_____.14.在平面直角坐標(biāo)系中,點A的坐標(biāo)為(a,3),點B的坐標(biāo)是(4,b),若點A與點B關(guān)于原點O對稱,則ab=_____.15.若分式的值為正,則實數(shù)的取值范圍是__________________.16.如圖,一艘輪船自西向東航行,航行到A處測得小島C位于北偏東60°方向上,繼續(xù)向東航行10海里到達(dá)點B處,測得小島C在輪船的北偏東15°方向上,此時輪船與小島C的距離為_________海里.(結(jié)果保留根號)17.從﹣2,﹣1,1,2四個數(shù)中,隨機抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.19.(5分)如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應(yīng)點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標(biāo);(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(biāo)(直接寫出結(jié)果即可).20.(8分)如圖,在航線l的兩側(cè)分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)21.(10分)某中學(xué)為了考察九年級學(xué)生的中考體育測試成績(滿分30分),隨機抽查了40名學(xué)生的成績(單位:分),得到如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):(3)根據(jù)樣本數(shù)據(jù),估計該中學(xué)九年級2000名學(xué)生中,體育測試成績得滿分的大約有多少名學(xué)生。22.(10分)某公司計劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準(zhǔn)備投入資金y萬元,全部用于購進35臺這兩種型號的電腦,設(shè)購進A型電腦x臺.(1)求y關(guān)于x的函數(shù)解析式;(2)若購進B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?23.(12分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達(dá)點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達(dá)點B,測得∠CBQ=60°,求這條河的寬是多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù)≈1.414,≈1.732)24.(14分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結(jié)果保留根號)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應(yīng)角相等;三角函數(shù)的定義及三角函數(shù)值的求法.2、D【解析】
依據(jù)平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據(jù)平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設(shè)AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.3、A【解析】
解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.4、C【解析】
根據(jù)點在數(shù)軸上的位置,可得a,b的關(guān)系,根據(jù)有理數(shù)的運算,可得答案.【詳解】解:由數(shù)軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數(shù)與數(shù)軸,利用點在數(shù)軸上的位置得出b<-1,0<a<1是解題關(guān)鍵,又利用了有理數(shù)的運算.5、C【解析】
設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質(zhì)得到AB=R,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據(jù)題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.6、C【解析】
根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計算即可.【詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,
∴x1+x2=2,x1?x2=-5,
∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.
故選C.【點睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.7、D【解析】
要求函數(shù)的解析式只要求出點的坐標(biāo)就可以,過點、作軸,軸,分別于、,根據(jù)條件得到,得到:,然后用待定系數(shù)法即可.【詳解】過點、作軸,軸,分別于、,設(shè)點的坐標(biāo)是,則,,,,,,,,,,,,因為點在反比例函數(shù)的圖象上,則,點在反比例函數(shù)的圖象上,點的坐標(biāo)是,.故選:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,相似三角形的判定與性質(zhì),求函數(shù)的解析式的問題,一般要轉(zhuǎn)化為求點的坐標(biāo)的問題,求出圖象上點的橫縱坐標(biāo)的積就可以求出反比例函數(shù)的解析式.8、A【解析】
根據(jù)題意可得等量關(guān)系:原計劃種植的畝數(shù)-改良后種植的畝數(shù)=10畝,根據(jù)等量關(guān)系列出方程即可.【詳解】設(shè)原計劃每畝平均產(chǎn)量萬千克,則改良后平均每畝產(chǎn)量為萬千克,根據(jù)題意列方程為:.故選:.【點睛】此題主要考查了由實際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.9、B【解析】分析:本題考察冪的乘方,同底數(shù)冪的乘法,積的乘方和同底數(shù)冪的除法.解析:,故A選項錯誤;a3·a=a4故B選項正確;(3ab)2=9a2b2故C選項錯誤;a6÷a3=a3故D選項錯誤.故選B.10、C【解析】
先利用三角函數(shù)求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結(jié)論;【詳解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如圖2,過點P作PE⊥BC于E,
在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質(zhì),三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
如圖,作輔助線;根據(jù)題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點A′作A′D⊥x軸與點D;設(shè)A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設(shè)AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)【點睛】該題以平面直角坐標(biāo)系為載體,以翻折變換為方法構(gòu)造而成;綜合考查了矩形的性質(zhì)、三角函數(shù)的定義、勾股定理等幾何知識點;對分析問題解決問題的能力提出了較高的要求.12、1【解析】
根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【點睛】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當(dāng)實驗的所有可能結(jié)果不是有限個或結(jié)果個數(shù)很多,或各種可能結(jié)果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.13、(20,4)(10086,0)【解析】
首先利用勾股定理得出AB的長,進而得出三角形的周長,進而求出B2,B4的橫坐標(biāo),進而得出變化規(guī)律,即可得出答案.【詳解】解:由題意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的橫坐標(biāo)為:10,B4的橫坐標(biāo)為:2×10=20,B2016的橫坐標(biāo)為:×10=1.∵B2C2=B4C4=OB=4,∴點B4的坐標(biāo)為(20,4),∴B2017的橫坐標(biāo)為1++=10086,縱坐標(biāo)為0,∴點B2017的坐標(biāo)為:(10086,0).故答案為(20,4)、(10086,0).【點睛】本題主要考查了點的坐標(biāo)以及圖形變化類,根據(jù)題意得出B點橫坐標(biāo)變化規(guī)律是解題的關(guān)鍵.14、1【解析】【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出a,b的值,進而得出答案.【詳解】∵點A的坐標(biāo)為(a,3),點B的坐標(biāo)是(4,b),點A與點B關(guān)于原點O對稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),熟知關(guān)于原點對稱的兩點的橫、縱坐標(biāo)互為相反數(shù)是解題的關(guān)鍵.15、x>0【解析】【分析】分式值為正,則分子與分母同號,據(jù)此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關(guān)鍵.16、5【解析】
如圖,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性質(zhì)求出BC即可.【詳解】如圖,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案為:5.【點睛】本題考查了解直角三角形的應(yīng)用-方向角問題,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造特殊三角形解決問題.17、【解析】
列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為=,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2);(3);【解析】
(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據(jù)切線的判斷定理得到結(jié)論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設(shè)DH=x,則DE=2x,所以然后求出x即可得到DE的長.【詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直徑,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO為等邊三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切線;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直徑為;(3)解:作EH⊥AD于H,如圖,∵點B等分半圓CD,∴∠BAC=45°,∴∠DAE=45°,設(shè)DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【點睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常常“遇到切點連圓心得半徑”.也考查了圓周角定理.19、(1)1;(2)點D(8﹣23,0);(3)點D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標(biāo)知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當(dāng)點D在OA上時.由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當(dāng)點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標(biāo)為(﹣35﹣1,0).綜上,點D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.20、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【解析】試題分析:(1)設(shè)AB與l交于點O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;(2)先計算出DE=EF+DF=求出DE=5,再由進而由tan∠CBE=求出EC,即可求出CD的長,進而求出航行速度.試題解析:(1)設(shè)AB與l交于點O,在Rt△AOD中,∵∠OAD=60°,AD=2(km),∴OA==4(km),∵AB=10(km),∴OB=AB﹣OA=6(km),在Rt△BOE中,∠OBE=∠OAD=60°,∴BE=OB?cos60°=3(km),答:觀測點B到航線l的距離為3km;(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2,∵∠BEO=90°,BO=6,BE=3,∴OE==3,∴DE=OD+OE=5(km);CE=BE?tan∠CBE=3tan76°,∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),∵5(min)=(h),∴v==12CD=12×3.38≈40.6(km/h),答:該輪船航行的速度約為40.6km
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《高等數(shù)學(xué)基礎(chǔ)知識》課件
- 湖南省名校聯(lián)考聯(lián)合體2024-2025學(xué)年高三上學(xué)期第四次聯(lián)考?xì)v史試題(含答案)
- 巨大胎兒的健康宣教
- 亞急性皮膚紅斑狼瘡的健康宣教
- 藥物性鼻炎的健康宣教
- 家族性進行性色素沉著的臨床護理
- 家族性黏液血管纖維瘤的臨床護理
- 1.4.2用空間向量研究夾角問題第2課時(教學(xué)課件)高二數(shù)學(xué)選擇性必修第一冊(人教A版2019)
- JJF(陜) 056-2021 等電位測試儀校準(zhǔn)規(guī)范
- 金融行業(yè)品牌推廣策略計劃
- 2021年全國中等職業(yè)學(xué)校學(xué)生服裝設(shè)計與工藝技能大賽理論題庫
- 五方單位評估報告
- 儲罐制作安裝預(yù)算書
- NUDD新獨難異失效模式預(yù)防檢查表
- NUDD_Definition新項目風(fēng)險評估 - 審查跟蹤記錄
- 關(guān)于進一步規(guī)范保健食品原料管理規(guī)定
- 搓、滾絲螺紋前的毛坯直徑
- 多媒體技術(shù)多媒體技術(shù)
- Y3150齒輪機床電氣控制技術(shù)課程設(shè)計
- 人教版小學(xué)數(shù)學(xué)六年級上冊第一單元測驗雙向細(xì)目表
- 讀《讓兒童在問題中學(xué)數(shù)學(xué)》有感范文三篇
評論
0/150
提交評論