2022屆湖南省長沙市寧鄉(xiāng)一中高三下第一次測試數(shù)學試題含解析_第1頁
2022屆湖南省長沙市寧鄉(xiāng)一中高三下第一次測試數(shù)學試題含解析_第2頁
2022屆湖南省長沙市寧鄉(xiāng)一中高三下第一次測試數(shù)學試題含解析_第3頁
2022屆湖南省長沙市寧鄉(xiāng)一中高三下第一次測試數(shù)學試題含解析_第4頁
2022屆湖南省長沙市寧鄉(xiāng)一中高三下第一次測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,,則下列結論正確的是()A. B. C. D.2.已知集合,,則()A. B.C. D.3.如果,那么下列不等式成立的是()A. B.C. D.4.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學期望,則的取值范圍為()A. B. C. D.5.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數(shù)的圖象交于點Q,且該冪函數(shù)在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.6.記為數(shù)列的前項和數(shù)列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.97.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.8.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%9.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.10.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.12.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中項的系數(shù)為_______.14.若關于的不等式在上恒成立,則的最大值為__________.15.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面16.已知,(,),則=_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標方程和直線l的普通方程(不要求具體過程);(II)設P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.18.(12分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.19.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實數(shù)取何值,直線恒過定點,并求出該定點的坐標;(2)若直線經(jīng)過點,試判斷函數(shù)的零點個數(shù)并證明.20.(12分)已知,,求證:(1);(2).21.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.22.(10分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設為曲線上任意一點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)指數(shù)函數(shù)的性質,取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質,可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質,求得的取值范圍是解答的關鍵,著重考查了計算能力,屬于基礎題.2.C【解析】

求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.3.D【解析】

利用函數(shù)的單調性、不等式的基本性質即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數(shù)的單調性比較大小,考查不等式的性質,屬于基礎題.4.A【解析】

根據(jù)題意,分別求出再根據(jù)離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功5.B【解析】

由已知可求出焦點坐標為,可求得冪函數(shù)為,設出切點通過導數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F(xiàn)關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點睛】本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數(shù)解析式,直線的斜率公式及導數(shù)的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.6.A【解析】

先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項,采用了賦值法,屬于中檔題.7.D【解析】

根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.8.B【解析】試題分析:由題意故選B.考點:正態(tài)分布9.B【解析】

延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據(jù)中線作出平行四邊形是關鍵,是中檔題.10.C【解析】

先得出兩直線平行的充要條件,根據(jù)小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發(fā)現(xiàn)兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.11.C【解析】

令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當時,,函數(shù)在上單調遞增;當時,,函數(shù)在上單調遞減.當時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導數(shù)求單調性的步驟,考查了分析能力和計算能力,屬于中檔題.12.D【解析】

由,可求出等比數(shù)列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設等比數(shù)列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.【點睛】本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質,考查學生的計算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.40【解析】

根據(jù)二項定理展開式,求得r的值,進而求得系數(shù).【詳解】根據(jù)二項定理展開式的通項式得所以,解得所以系數(shù)【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.14.【解析】

分類討論,時不合題意;時求導,求出函數(shù)的單調區(qū)間,得到在上的最小值,利用不等式恒成立轉化為函數(shù)最小值,化簡得,構造放縮函數(shù)對自變量再研究,可解,【詳解】令;當時,,不合題意;當時,,令,得或,所以在區(qū)間和上單調遞減.因為,且在區(qū)間上單調遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設,則.當時,;當時,,所以在上單調遞增;在上單調遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.15.π.【解析】

設三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關問題,根據(jù)立體幾何中的線段關系求動點的軌跡,屬于中檔題.16.【解析】

先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(I)x2=4aya>0,x-y+1=0【解析】

(I)利用所給的極坐標方程和參數(shù)方程,直接整理化簡得到直角坐標方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標方程,結合韋達定理以及等比數(shù)列的性質即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點睛】本題考查了極坐標方程、參數(shù)方程與直角坐標和普通方程的互化,以及參數(shù)方程的綜合知識,結合等比數(shù)列,熟練運用知識,屬于較易題.18.(1)見解析;(2)【解析】

(1)取的中點,連接,,由,進而,由,得.進而平面,進而結論可得證(2)(方法一)過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點,上的點,使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點,連接,,由已知得,所以,又點是的中點,所以.因為,點是線段的中點,所以.又因為,所以,從而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,則點,,,,所以,,.設平面的法向量為,由,得,令,得.同理,設平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點,上的點,使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計算得,,,所以.【點睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計算能力,是中檔題19.(1)見解析,(2)函數(shù)存在唯一零點.【解析】

(1)首先求出導函數(shù),利用導數(shù)的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據(jù)方程即可求出定點.(2)由(1)求出函數(shù),令方程可轉化為記,利用導數(shù)判斷函數(shù)在上單調遞增,根據(jù),由零點存在性定理即可求出零點個數(shù).【詳解】所以直線方程為即,恒過點將代入直線方程,得考慮方程即,等價于記,則于是函數(shù)在上單調遞增,又所以函數(shù)在區(qū)間上存在唯一零點,即函數(shù)存在唯一零點.【點睛】本題考查了導數(shù)的幾何意義、直線過定點、利用導數(shù)研究函數(shù)的單調性、零點存在性定理,屬于難題.20.(1)見解析;(2)見解析.【解析】

(1)結合基本不等式可證明;(2)利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論