2022-2023學年湖北省武漢市青山區(qū)中考數學押題試卷含解析_第1頁
2022-2023學年湖北省武漢市青山區(qū)中考數學押題試卷含解析_第2頁
2022-2023學年湖北省武漢市青山區(qū)中考數學押題試卷含解析_第3頁
2022-2023學年湖北省武漢市青山區(qū)中考數學押題試卷含解析_第4頁
2022-2023學年湖北省武漢市青山區(qū)中考數學押題試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,⊙O的直徑AB與弦CD的延長線交于點E,若DE=OB,∠AOC=84°,則∠E等于()A.42° B.28° C.21° D.20°2.如圖,矩形ABCD中,AB=10,BC=5,點E,F(xiàn),G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為()A.5 B.10 C.10 D.153.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.4.數據”1,2,1,3,1”的眾數是()A.1B.1.5C.1.6D.35.化簡:(a+)(1﹣)的結果等于()A.a﹣2 B.a+2 C. D.6.如圖的立體圖形,從左面看可能是()A. B.C. D.7.某校體育節(jié)有13名同學參加女子百米賽跑,它們預賽的成績各不相同,取前6名參加決賽.小穎已經知道了自己的成績,她想知道自己能否進入決賽,還需要知道這13名同學成績的()A.方差B.極差C.中位數D.平均數8.﹣6的倒數是()A.﹣16 B.19.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了10.對于反比例函數y=﹣2xA.圖象分布在第二、四象限B.當x>0時,y隨x的增大而增大C.圖象經過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知,,則________.12.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結論有_____.(填寫所有正確結論的序號)13.若x2+kx+81是完全平方式,則k的值應是________.14.計算:=_____________.15.(11·湖州)如圖,已知A、B是反比例函數(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設四邊形OMPN的面積為S,P點運動時間為t,則S關于t的函數圖象大致為16.為迎接文明城市的驗收工作,某居委會組織兩個檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進行抽查.各組隨機抽取轄區(qū)內某三個小區(qū)中的一個進行檢查,則兩個組恰好抽到同一個小區(qū)的概率是_____.三、解答題(共8題,共72分)17.(8分)某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,在一段時間內,銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.寫出銷售量y件與銷售單價x元之間的函數關系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數關系式;若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,則商場銷售該品牌童裝獲得的最大利潤是多少?18.(8分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.19.(8分)如圖,分別與相切于點,點在上,且,,垂足為.求證:;若的半徑,,求的長20.(8分)如圖,已知△ABC,請用尺規(guī)作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).21.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數.22.(10分)定義:任意兩個數a,b,按規(guī)則c=b2+ab﹣a+7擴充得到一個新數c,稱所得的新數c為“如意數”.若a=2,b=﹣1,直接寫出a,b的“如意數”c;如果a=3+m,b=m﹣2,試說明“如意數”c為非負數.23.(12分)如圖,已知□ABCD的面積為S,點P、Q時是?ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結EF。甲,乙兩位同學對條件進行分析后,甲得到結論①:“E是BC中點”.乙得到結論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學的結論是否正確,并說明理由.24.為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據調查結果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據統(tǒng)計圖中的信息回答下列問題:(1)本次調查的學生人數是人;(2)圖2中α是度,并將圖1條形統(tǒng)計圖補充完整;(3)請估算該校九年級學生自主學習時間不少于1.5小時有人;(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

利用OB=DE,OB=OD得到DO=DE,則∠E=∠DOE,根據三角形外角性質得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC進行計算即可.【詳解】解:連結OD,如圖,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,

∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故選:B.【點睛】本題考查了圓的認識:掌握與圓有關的概念(

弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).也考查了等腰三角形的性質.2、B【解析】作點E關于BC的對稱點E′,連接E′G交BC于點F,此時四邊形EFGH周長取最小值,過點G作GG′⊥AB于點G′,如圖所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四邊形EFGH=2E′G=10,故選B.【點睛】本題考查了軸對稱-最短路徑問題,矩形的性質等,根據題意正確添加輔助線是解題的關鍵.3、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數的定義、等腰三角形的性質及勾股定理.4、A【解析】

眾數指一組數據中出現(xiàn)次數最多的數據,根據眾數的定義就可以求解.【詳解】在這一組數據中1是出現(xiàn)次數最多的,故眾數是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數的意義.眾數是一組數據中出現(xiàn)次數最多的數據,注意眾數可以不止一個.5、B【解析】

解:原式====.故選B.考點:分式的混合運算.6、A【解析】

根據三視圖的性質即可解題.【詳解】解:根據三視圖的概念可知,該立體圖形是三棱柱,左視圖應為三角形,且直角應該在左下角,故選A.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.7、C【解析】13個不同的分數按從小到大排序后,中位數及中位數之后的共有7個數,故只要知道自己的分數和中位數就可以知道是否獲獎了.故選C.8、A【解析】解:﹣6的倒數是﹣169、A【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點作答.【詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【點睛】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關鍵是熟練的掌握正方體相對兩個面上的文字.10、D【解析】

根據反比例函數圖象的性質對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】考查了反比例函數的圖象與性質,掌握反比例函數的性質是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、65°【解析】

根據兩直線平行,同旁內角互補求出∠3,再根據三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【詳解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案為:65°.【點睛】此題考查平行線的性質,解題關鍵在于利用同旁內角互補求出∠3.12、①②④.【解析】

根據菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質一一判斷即可.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯誤,設△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.【點睛】此題考查平行四邊形的性質、菱形的判定和性質、平行線分線段成比例定理、等高模型等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數解決問題.13、±1【解析】試題分析:利用完全平方公式的結構特征判斷即可確定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案為±1.考點:完全平方式.14、【解析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關運算法則是正確解答這類題的關鍵.15、A【解析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數,開口向上;②當點P在AB上運動時,設P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數綜合題;2.動點問題的函數圖象.16、【解析】

將三個小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.【詳解】解:將三個小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結果,其中兩個組恰好抽到同一個小區(qū)的結果有3種,所以兩個組恰好抽到同一個小區(qū)的概率為=.故答案為:.【點睛】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數與總情況數之比.三、解答題(共8題,共72分)17、(1);(2);(3)最多獲利4480元.【解析】

(1)銷售量y為200件加增加的件數(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數的性質得到w=﹣20x2+3000x﹣108000的對稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據二次函數的性質得到當76≤x≤78時,W隨x的增大而減小,把x=76代入計算即可得到商場銷售該品牌童裝獲得的最大利潤.【詳解】(1)根據題意得,y=200+(80﹣x)×20=﹣20x+1800,所以銷售量y件與銷售單價x元之間的函數關系式為y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數關系式為:W=﹣20x2+3000x﹣108000;(3)根據題意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,對稱軸為x=﹣=75,∵a=﹣20<0,∴拋物線開口向下,∴當76≤x≤78時,W隨x的增大而減小,∴x=76時,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商場銷售該品牌童裝獲得的最大利潤是4480元.【點睛】二次函數的應用.18、(1)見解析;(2)【解析】

(1)根據矩形的性質可得AB=CD,∠C=∠A=90°,再根據折疊的性質可得DE=CD,∠C=∠E=90°,然后利用“角角邊”證明即可;

(2)設AF=x,則BF=DF=8-x,根據勾股定理列方程求解即可.【詳解】(1)證明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折疊得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,設AF=x,則BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【點睛】本題考查了翻折變換的性質,全等三角形的判定與性質,矩形的性質,勾股定理,翻折前后對應邊相等,對應角相等,利用勾股定理列出方程是解題的關鍵.19、(1)見解析(2)5【解析】

解:(1)證明:如圖,連接,則.∵,∴.∵,∴四邊形是平行四邊形.∴.(2)連接,則.∵,,,∴,.∴.∴.設,則.在中,有.∴.即.20、見解析【解析】

分別作∠ABC和∠ACB的平分線,它們的交點O滿足條件.【詳解】解:如圖,點O為所作.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).21、(1)見解析;(2)40°.【解析】

(1)根據角平分線的性質可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據等腰三角形的性質結合三角形內角和定理即可求出∠A的度數.【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點睛】本題考查了等腰三角形的判定與性質、平行線的性質以及角平分線.解題的關鍵是:(1)根據平行線的性質結合角平分線的性質找出∠EDC=∠ECD;(2)利用角平分線的性質結合等腰三角形的性質求出∠ACB=∠ABC=70°.22、(1)4;(2)詳見解析.【解析】

(1)本題是一道自定義運算題型,根據題中給的如意數的概念,代入即可得出結果(2)根據如意數的定義,求出代數式,分析取值范圍即可.【詳解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意數”c為非負數【點睛】本題考查了因式分解,完全平方式(m﹣1)2的非負性,難度不大.23、①結論一正確,理由見解析;②結論二正確,S四QEFP=S【解析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結合點Q是BD的三等分點可得BE:AD=BQ:DQ=1:2,再結合AD=BC即可得到BE:BC=1:2,從而可得點E是BC的中點,由此即可說明甲同學的結論①成立;(2)同(1)易證點F是CD的中點,由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論