版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,小剛從山腳A出發(fā),沿坡角為的山坡向上走了300米到達(dá)B點(diǎn),則小剛上升了()A.米 B.米 C.米 D.米2.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個(gè)三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個(gè)頂點(diǎn)在紙條的另一邊上,則∠1的度數(shù)是()A.15° B.22.5° C.30° D.45°3.用五個(gè)完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.4.如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π5.下列說法錯(cuò)誤的是()A.必然事件的概率為1B.?dāng)?shù)據(jù)1、2、2、3的平均數(shù)是2C.?dāng)?shù)據(jù)5、2、﹣3、0的極差是8D.如果某種游戲活動(dòng)的中獎(jiǎng)率為40%,那么參加這種活動(dòng)10次必有4次中獎(jiǎng)6.如圖,由四個(gè)正方體組成的幾何體的左視圖是()A. B. C. D.7.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°8.如圖,是的直徑,弦,垂足為點(diǎn),點(diǎn)是上的任意一點(diǎn),延長交的延長線于點(diǎn),連接.若,則等于()A. B. C. D.9.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設(shè)綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.10.sin60°的值為()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時(shí)測得米的影長為米,則電線桿的高度為__________米.12.如圖,將邊長為1的正方形的四條邊分別向外延長一倍,得到第二個(gè)正方形,將第二個(gè)正方形的四條邊分別向外延長一倍得到第三個(gè)正方形,…,則第2018個(gè)正方形的面積為_____.13.若關(guān)于x的方程x2-x+sinα=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α的度數(shù)為___.14.對于任意實(shí)數(shù)a、b,定義一種運(yùn)算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據(jù)上述的定義解決問題:若不等式3※x<1,則不等式的正整數(shù)解是_____.15.如圖,線段AC=n+1(其中n為正整數(shù)),點(diǎn)B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當(dāng)AB=1時(shí),△AME的面積記為S1;當(dāng)AB=2時(shí),△AME的面積記為S2;當(dāng)AB=3時(shí),△AME的面積記為S3;…;當(dāng)AB=n時(shí),△AME的面積記為Sn.當(dāng)n≥2時(shí),Sn﹣Sn﹣1=▲.16.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點(diǎn)E,連接BD則陰影部分的面積為____(結(jié)果保留π)三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.18.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點(diǎn)A(3,0)、B(0,-3),點(diǎn)P是直線AB上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t.分別求出直線AB和這條拋物線的解析式.若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線段PM最長時(shí),求△ABM的面積.是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.19.(8分)如圖有A、B兩個(gè)大小均勻的轉(zhuǎn)盤,其中A轉(zhuǎn)盤被分成3等份,B轉(zhuǎn)盤被分成4等份,并在每一份內(nèi)標(biāo)上數(shù)字.小明和小紅同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線時(shí)視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的k,將B轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的b.請用列表或畫樹狀圖的方法寫出所有的可能;求一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限的概率.20.(8分)規(guī)定:不相交的兩個(gè)函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點(diǎn)向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點(diǎn)與交點(diǎn)之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.21.(8分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點(diǎn),延長DE到點(diǎn)F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當(dāng)∠ACB=60°時(shí),求證:四邊形BCFE是菱形.22.(10分)如圖,△ABC是等腰三角形,AB=AC,點(diǎn)D是AB上一點(diǎn),過點(diǎn)D作DE⊥BC交BC于點(diǎn)E,交CA延長線于點(diǎn)F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,23.(12分)為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競賽.從中抽取了部分學(xué)生成績(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)頻數(shù)分布直方圖(未完成)和扇形圖如下,請解答下列問題:(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補(bǔ)全頻數(shù)分布直方圖;(4)若成績在80分以上優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績優(yōu)秀學(xué)生有名.24.2018年湖南省進(jìn)入高中學(xué)習(xí)的學(xué)生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級(jí)中學(xué)學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)學(xué)生對政策的了解程度由高到低分為A,B,C,D四個(gè)等級(jí),并對調(diào)查結(jié)果分析后繪制了如下兩幅圖不完整的統(tǒng)計(jì)圖.請你根據(jù)圖中提供的信息完成下列問題:(1)求被調(diào)查學(xué)生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)求扇形統(tǒng)計(jì)圖中的A等對應(yīng)的扇形圓心角的度數(shù);(3)已知該校有1500名學(xué)生,估計(jì)該校學(xué)生對政策內(nèi)容了解程度達(dá)到A等的學(xué)生有多少人?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
利用銳角三角函數(shù)關(guān)系即可求出小剛上升了的高度.【詳解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB?sinα=300sinα米.故選A.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用,根據(jù)題意構(gòu)造直角三角形,正確選擇銳角三角函數(shù)得出AB,BO的關(guān)系是解題關(guān)鍵.2、A【解析】試題分析:如圖,過A點(diǎn)作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點(diǎn):平行線的性質(zhì).3、A【解析】從正面看第一層是三個(gè)小正方形,第二層左邊一個(gè)小正方形,故選:A.4、B【解析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側(cè)面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點(diǎn)睛:本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.5、D【解析】試題分析:A.概率值反映了事件發(fā)生的機(jī)會(huì)的大小,必然事件是一定發(fā)生的事件,所以概率為1,本項(xiàng)正確;B.?dāng)?shù)據(jù)1、2、2、3的平均數(shù)是1+2+2+34C.這些數(shù)據(jù)的極差為5﹣(﹣3)=8,故本項(xiàng)正確;D.某種游戲活動(dòng)的中獎(jiǎng)率為40%,屬于不確定事件,可能中獎(jiǎng),也可能不中獎(jiǎng),故本說法錯(cuò)誤,故選D.考點(diǎn):1.概率的意義;2.算術(shù)平均數(shù);3.極差;4.隨機(jī)事件6、B【解析】從左邊看可以看到兩個(gè)小正方形摞在一起,故選B.7、D【解析】
根據(jù)線段垂直平分線性質(zhì)得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.8、B【解析】
連接BD,利用直徑得出∠ABD=65°,進(jìn)而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點(diǎn)睛】此題考查圓周角定理,關(guān)鍵是利用直徑得出∠ABD=65°.9、B【解析】
先用含有x的式子表示2015年的綠化面積,進(jìn)而用含有x的式子表示2016年的綠化面積,根據(jù)等式關(guān)系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用,找準(zhǔn)其中的等式關(guān)系式解答此題的關(guān)鍵.10、B【解析】解:sin60°=.故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(14+2)米【解析】
過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時(shí)同地物高與影長成正比列式求出EF,再求出BF,再次利用同時(shí)同地物高與影長成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,主要利用了同時(shí)同地物高與影長成正比的性質(zhì),作輔助線求出AB的影長若全在水平地面上的長BF是解題的關(guān)鍵.12、1【解析】
先分別求出第1個(gè)、第2個(gè)、第3個(gè)正方形的面積,由此總結(jié)規(guī)律,得到第n個(gè)正方形的面積,將n=2018代入即可求出第2018個(gè)正方形的面積.【詳解】:∵第1個(gè)正方形的面積為:1+4×12×2×1=5=51;
第2個(gè)正方形的面積為:5+4×12×25×5=25=52;
第3個(gè)正方形的面積為:25+4×12×225×25=125=53【點(diǎn)睛】本題考查了規(guī)律型:圖形的變化類,解題的關(guān)鍵是得到第n個(gè)正方形的面積.13、30°【解析】試題解析:∵關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.14、2【解析】【分析】根據(jù)新定義可得出關(guān)于x的一元一次不等式,解之取其中的正整數(shù)即可得出結(jié)論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數(shù),∴x=2,故答案為:2.【點(diǎn)睛】本題考查一元一次不等式的整數(shù)解以及實(shí)數(shù)的運(yùn)算,通過解不等式找出x<是解題的關(guān)鍵.15、【解析】連接BE,∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當(dāng)AB=n時(shí),△AME的面積為,當(dāng)AB=n-1時(shí),△AME的面積為.∴當(dāng)n≥2時(shí),16、π.【解析】
如圖,連接OE,利用切線的性質(zhì)得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計(jì)算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計(jì)算的面積即可得到陰影部分的面積.【詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點(diǎn)E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了矩形的性質(zhì)和扇形的面積公式.三、解答題(共8題,共72分)17、(1)、(t+6,t);(2)、當(dāng)t=2時(shí),S有最小值是16;(3)、理由見解析.【解析】
(1)如圖所示,過點(diǎn)E作EG⊥x軸于點(diǎn)G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點(diǎn)E的坐標(biāo)為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當(dāng)t=2時(shí),S有最小值是16;(3)①假設(shè)∠FBD為直角,則點(diǎn)F在直線BC上,∵PF=OP<AB,∴點(diǎn)F不可能在BC上,即∠FBD不可能為直角;②假設(shè)∠FDB為直角,則點(diǎn)D在EF上,∵點(diǎn)D在矩形的對角線PE上,∴點(diǎn)D不可能在EF上,即∠FDB不可能為直角;③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點(diǎn)H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.18、(1)拋物線的解析式是.直線AB的解析式是.(2).(3)P點(diǎn)的橫坐標(biāo)是或.【解析】
(1)分別利用待定系數(shù)法求兩函數(shù)的解析式:把A(3,0)B(0,﹣3)分別代入y=x2+mx+n與y=kx+b,得到關(guān)于m、n的兩個(gè)方程組,解方程組即可;(2)設(shè)點(diǎn)P的坐標(biāo)是(t,t﹣3),則M(t,t2﹣2t﹣3),用P點(diǎn)的縱坐標(biāo)減去M的縱坐標(biāo)得到PM的長,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根據(jù)二次函數(shù)的最值得到當(dāng)t=﹣=時(shí),PM最長為=,再利用三角形的面積公式利用S△ABM=S△BPM+S△APM計(jì)算即可;(3)由PM∥OB,根據(jù)平行四邊形的判定得到當(dāng)PM=OB時(shí),點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形,然后討論:當(dāng)P在第四象限:PM=OB=3,PM最長時(shí)只有,所以不可能;當(dāng)P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;當(dāng)P在第三象限:PM=OB=3,t2﹣3t=3,分別解一元二次方程即可得到滿足條件的t的值.【詳解】解:(1)把A(3,0)B(0,-3)代入,得解得所以拋物線的解析式是.設(shè)直線AB的解析式是,把A(3,0)B(0,)代入,得解得所以直線AB的解析式是.(2)設(shè)點(diǎn)P的坐標(biāo)是(),則M(,),因?yàn)樵诘谒南笙?,所以PM=,當(dāng)PM最長時(shí),此時(shí)==.(3)若存在,則可能是:①P在第四象限:平行四邊形OBMP,PM=OB=3,PM最長時(shí),所以不可能.②P在第一象限平行四邊形OBPM:PM=OB=3,,解得,(舍去),所以P點(diǎn)的橫坐標(biāo)是.③P在第三象限平行四邊形OBPM:PM=OB=3,,解得(舍去),①,所以P點(diǎn)的橫坐標(biāo)是.所以P點(diǎn)的橫坐標(biāo)是或.19、(1)答案見解析;(2).【解析】
(1)k可能的取值為-1、-2、-3,b可能的取值為-1、-2、3、4,所以將所有等可能出現(xiàn)的情況用列表方式表示出來即可.(2)判斷出一次函數(shù)y=kx+b經(jīng)過一、二、四象限時(shí)k、b的正負(fù),在列表中找出滿足條件的情況,利用概率的基本概念即可求出一次函數(shù)y=kx+b經(jīng)過一、二、四象限的概率.【詳解】解:(1)列表如下:所有等可能的情況有12種;(2)一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限時(shí),k<0,b>0,情況有4種,則P==.20、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】
(1)把y=x2﹣2x+3配成頂點(diǎn)式得到拋物線上的點(diǎn)到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進(jìn)行判斷;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點(diǎn)到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時(shí),PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點(diǎn)向x軸作垂線與直線相交,拋物線頂點(diǎn)與交點(diǎn)之間的距離為2,∴不同意他的看法;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時(shí),MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點(diǎn)睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.21、(1)見解析;(2)見解析【解析】
(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據(jù)菱形的判定證明即可.【詳解】(1)證明::∵D.E為AB,AC中點(diǎn)∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、菱形的判定、等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.22、(1)見解析;(2)EC=1.【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質(zhì)可推出∠F=∠BDE,再根據(jù)對頂角相等進(jìn)行等量代換即可推出∠F=∠FDA,于是得到結(jié)論;(2)根據(jù)解直角三角形和等邊三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【點(diǎn)睛】本題主要考查等腰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房屋租賃合同押金繳納、扣除及退還細(xì)則3篇
- 2025年挖掘機(jī)銷售與售后服務(wù)一體化合同2篇
- 2025年度大型煤礦資源整合轉(zhuǎn)讓合同范本4篇
- 二零二五年度藝術(shù)品拍賣行專家聘用協(xié)議3篇
- 二零二五版企業(yè)股權(quán)激勵(lì)項(xiàng)目審計(jì)與合規(guī)審查合同
- 2025版零用錢消費(fèi)數(shù)據(jù)分析與應(yīng)用合同4篇
- 二零二五年度數(shù)據(jù)中心建設(shè)PPP項(xiàng)目特許經(jīng)營協(xié)議2篇
- 二零二五年度綠化苗木種植與病蟲害防治技術(shù)合作合同4篇
- 二零二五年度綠色環(huán)保路面施工合同模板4篇
- 二零二五年度農(nóng)村集體安置房銷售合同模板3篇
- GB/T 6913-2008鍋爐用水和冷卻水分析方法磷酸鹽的測定
- GB/T 18717.2-2002用于機(jī)械安全的人類工效學(xué)設(shè)計(jì)第2部分:人體局部進(jìn)入機(jī)械的開口尺寸確定原則
- 教案:第三章 公共管理職能(《公共管理學(xué)》課程)
- 中國文化概論(第三版)全套課件
- 117-鋼結(jié)構(gòu)工程質(zhì)量常見問題與管控措施
- SHS5230三星指紋鎖中文說明書
- 諾和關(guān)懷俱樂部對外介紹
- 保定市縣級(jí)地圖PPT可編輯矢量行政區(qū)劃(河北省)
- 新蘇教版科學(xué)六年級(jí)下冊全冊教案(含反思)
- 供方注冊指南-ZTE
- 真心英雄合唱歌詞
評(píng)論
0/150
提交評(píng)論