版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年湖南省張家界市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
2.A.A.arctanx2
B.2xarctanx
C.2xarctanx2
D.
3.曲線Y=x-3在點(diǎn)(1,1)處的切線的斜率為().
A.-1
B.-2
C.-3
D.-4
4.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
5.
6.()。A.
B.
C.
D.
7.
8.
9.
10.A.A.>0B.<0C.=0D.不存在
11.
12.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.低階無窮小13.等于().A.A.0
B.
C.
D.∞
14.A.A.
B.
C.
D.
15.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
16.
17.
18.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().
A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量19.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)20.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)二、填空題(20題)21.
22.23.∫(x2-1)dx=________。
24.過點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_________.
25.
26.
27.∫e-3xdx=__________。
28.29.30.交換二重積分次序=______.
31.
32.33.微分方程y"+y'=0的通解為______.34.曲線y=x3-6x的拐點(diǎn)坐標(biāo)為______.
35.
36.
37.
38.39.40.三、計(jì)算題(20題)41.求微分方程的通解.42.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.43.將f(x)=e-2X展開為x的冪級數(shù).
44.
45.求曲線在點(diǎn)(1,3)處的切線方程.46.47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
48.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
49.求微分方程y"-4y'+4y=e-2x的通解.
50.51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則52.
53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
55.56.
57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.59.證明:
60.
四、解答題(10題)61.
62.證明:當(dāng)時(shí),sinx+tanx≥2x.
63.64.設(shè)區(qū)域D為:
65.
66.
確定a,b使得f(x)在x=0可導(dǎo)。
67.
68.
69.
70.(本題滿分8分)
五、高等數(shù)學(xué)(0題)71.x→0時(shí),1一cos2x與
等價(jià),則a=__________。
六、解答題(0題)72.
參考答案
1.D
2.C
3.C點(diǎn)(1,1)在曲線.由導(dǎo)數(shù)的幾何意義可知,所求切線的斜率為-3,因此選C.
4.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
5.D
6.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。
7.B
8.A解析:
9.B
10.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對稱區(qū)間。由定積分的對稱性質(zhì)知選C。
11.B
12.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無窮小,因此選A。
13.A
14.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.
由于z=tan(xy),因此
可知應(yīng)選B.
15.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.
16.D
17.B
18.A本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性.
由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
19.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特解y*的取法.
由于相應(yīng)齊次方程為y"+3y'0,
其特征方程為r2+3r=0,
特征根為r1=0,r2=-3,
自由項(xiàng)f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)
故應(yīng)選D.
20.C
21.x=-1
22.
23.
24.
25.
26.
解析:
27.-(1/3)e-3x+C
28.
29.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
30.本題考查的知識(shí)點(diǎn)為交換二重積分次序.
積分區(qū)域D:0≤x≤1,x2≤y≤x
積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此
31.
32.2本題考查了定積分的知識(shí)點(diǎn)。33.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.
微分方程為y"+y'=0.
特征方程為r3+r=0.
特征根r1=0.r2=-1.
因此所給微分方程的通解為
y=C1+C2e-x,
其牛C1,C2為任意常數(shù).34.(0,0)本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點(diǎn)x1,x2,…,xk兩側(cè),y"的符號是否異號.若在xk的兩側(cè)y"異號,則點(diǎn)(xk,f(xk)為曲線y=f(x)的拐點(diǎn).
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時(shí),y=0.
當(dāng)x<0時(shí),y"<0;當(dāng)x>0時(shí),y">0.因此點(diǎn)(0,0)為曲線y=x3-6x的拐點(diǎn).
本題出現(xiàn)較多的錯(cuò)誤為:填x=0.這個(gè)錯(cuò)誤產(chǎn)生的原因是對曲線拐點(diǎn)的概念不清楚.拐點(diǎn)的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點(diǎn)稱之為曲線的拐點(diǎn).其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號之后,再求出f(x0),則拐點(diǎn)為(x0,f(x0)).
注意極值點(diǎn)與拐點(diǎn)的不同之處!
35.11解析:
36.3/2
37.38.1/2本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
39.1.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
40.本題考查的知識(shí)點(diǎn)為定積分的換元法.
41.
42.
43.
44.45.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
46.
47.
列表:
說明
48.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
49.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
50.51.由等價(jià)無窮小量的定義可知
52.
則
53.
54.
55.
56.由一階線性微分方程通解公式有
57.由二重積分物理意義知
58.函數(shù)的定義域?yàn)?/p>
注意
59.
60.
61.
62.
63.64.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).
如果積分區(qū)域?yàn)閳A域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.
使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
本題考生中常見的錯(cuò)誤為:
被積函數(shù)中丟掉了r.這是將直角坐標(biāo)系下的二重積分化為極坐標(biāo)下的二次積分時(shí)常見的錯(cuò)誤,考生務(wù)必要注意.
65.
66.
①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②
∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2169-2024氘燈光譜輻射照度(200 nm~400 nm)校準(zhǔn)規(guī)范
- GB/T 44644.2-2024道路車輛50 Ω阻抗射頻連接系統(tǒng)接口第2部分:測試方法
- 江蘇省泰州市姜堰區(qū)2024-2025學(xué)年七年級上學(xué)期11月期中生物試題(無答案)
- 安徽省亳州市黌學(xué)英才中學(xué)2024-2025學(xué)年七年級上學(xué)期期中生物學(xué)試題(含答案)
- 數(shù)據(jù)中心項(xiàng)目申請報(bào)告
- 阜陽師范大學(xué)《運(yùn)動(dòng)解剖學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《漢英筆譯二》2022-2023學(xué)年第一學(xué)期期末試卷
- 人教版三年級下冊品德與社會(huì)教案
- 福建師范大學(xué)《語言與統(tǒng)計(jì)學(xué)入門》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《書法篆刻二》2022-2023學(xué)年第一學(xué)期期末試卷
- 安徽省亳州市黌學(xué)英才中學(xué)2024-2025學(xué)年七年級上學(xué)期期中生物學(xué)試題(含答案)
- 期中綜合檢測(1-4單元)(試題)- 2024-2025學(xué)年二年級上冊數(shù)學(xué)人教版
- 滬粵版初中物理八上八年級上學(xué)期物理期中試卷(解析版)
- 江蘇省蘇州市蘇州工業(yè)園區(qū)蘇州工業(yè)園區(qū)景城學(xué)校2023-2024學(xué)年八年級上學(xué)期期中數(shù)學(xué)試題(解析版)
- 高中挺身式跳遠(yuǎn)-教案
- 2024年消防宣傳月知識(shí)競賽考試題庫500題(含答案)
- 2024年下半年事業(yè)單位公開考試招聘工作人員報(bào)考信息表
- 國開2024年秋《機(jī)電控制工程基礎(chǔ)》形考任務(wù)1答案
- 食品安全工作操作流程(5篇)
- 《中華民族大團(tuán)結(jié)》(初中)-第10課-偉大夢想-共同追求-教案
- 《非計(jì)劃性拔管》課件
評論
0/150
提交評論