版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年內(nèi)蒙古自治區(qū)呼倫貝爾市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
2.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
3.A.
B.
C.
D.
4.A.A.
B.
C.
D.
5.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
6.
7.()。A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型
8.微分方程y"-y=ex的一個特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
9.A.
B.
C.
D.
10.A.A.0
B.
C.arctanx
D.
11.
12.
13.圖示為研磨細(xì)砂石所用球磨機(jī)的簡化示意圖,圓筒繞0軸勻速轉(zhuǎn)動時,帶動筒內(nèi)的許多鋼球一起運(yùn)動,當(dāng)鋼球轉(zhuǎn)動到一定角度α=50。40時,它和筒壁脫離沿拋物線下落,借以打擊礦石,圓筒的內(nèi)徑d=32m。則獲得最大打擊時圓筒的轉(zhuǎn)速為()。
A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min
14.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()
A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較
15.
16.
17.
18.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
19.下列關(guān)系式中正確的有()。A.
B.
C.
D.
20.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
21.()A.A.條件收斂
B.絕對收斂
C.發(fā)散
D.收斂性與k有關(guān)
22.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
23.方程x2+2y2+3z2=1表示的二次曲面是
A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面24.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
25.
26.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.427.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
28.A.e-2
B.e-1
C.e
D.e2
29.
30.下列命題中正確的有().
31.
32.
33.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
34.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
35.等于().A.A.0
B.
C.
D.∞
36.設(shè)有直線當(dāng)直線l1與l2平行時,λ等于().
A.1B.0C.-1/2D.-137.A.A.2B.1C.0D.-1
38.
39.
40.
41.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
42.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
43.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
44.
45.
46.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
47.A.0B.2C.2f(-1)D.2f(1)48.()。A.
B.
C.
D.
49.
50.
二、填空題(20題)51.
52.設(shè)z=x3y2,則=________。53.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。54.55.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。56.57.58.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f'(0)=______.59.60.61.二元函數(shù)z=x2+y2+1的極小值為_______.62.
63.
64.
65.
66.
67.
68.冪級數(shù)的收斂半徑為______.69.設(shè)函數(shù)f(x)有連續(xù)的二階導(dǎo)數(shù)且f(0)=0,f'(0)=1,f''(0)=-2,則70.三、計算題(20題)71.
72.求微分方程的通解.73.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.74.
75.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
76.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
77.
78.證明:79.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則80.81.82.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
83.
84.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.85.86.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
87.求微分方程y"-4y'+4y=e-2x的通解.
88.將f(x)=e-2X展開為x的冪級數(shù).89.求曲線在點(diǎn)(1,3)處的切線方程.90.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).四、解答題(10題)91.
92.
93.
94.
95.
96.求y"-2y'=2x的通解.
97.
98.99.100.五、高等數(shù)學(xué)(0題)101.y=ze-x在[0,2]上的最大值=__________,最小值=________。
六、解答題(0題)102.
參考答案
1.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時,y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
2.B
3.D本題考查的知識點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
4.Dy=cos3x,則y'=-sin3x*(3x)'=-3sin3x。因此選D。
5.B本題考查的知識點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯誤是選C。如果畫個草圖,則可以避免這類錯誤。
6.B
7.D
8.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
9.A
10.A
11.A
12.D
13.C
14.A由f"(x)>0說明f(x)在[0,1]上是增函數(shù),因為1>0,所以f(1)>f(0)。故選A。
15.C解析:
16.D解析:
17.B
18.C
19.B本題考查的知識點(diǎn)為定積分的性質(zhì).
由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時,x>x2,因此
可知應(yīng)選B。
20.A
21.A
22.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
23.D本題考查了二次曲面的知識點(diǎn)。
24.A由于
可知應(yīng)選A.
25.D解析:
26.D的值等于區(qū)域D的面積,D為邊長為2的正方形面積為4,因此選D。
27.B
28.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.
29.A
30.B解析:
31.C
32.B
33.C
34.A
35.A
36.C解析:
37.C
38.C解析:
39.B解析:
40.A
41.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
42.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
43.B如果y1,y2這兩個特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
44.D
45.A
46.B本題考查的知識點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.
注意到A左端為定積分,定積分存在時,其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
47.C本題考查了定積分的性質(zhì)的知識點(diǎn)。
48.C由不定積分基本公式可知
49.B
50.C
51.52.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。
53.
54.F(sinx)+C.
本題考查的知識點(diǎn)為不定積分的換元法.
55.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx56.F(sinx)+C本題考查的知識點(diǎn)為不定積分的換元法.
由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,
57.本題考查的知識點(diǎn)為:求解可分離變量的微分方程.58.0本題考查的知識點(diǎn)為極值的必要條件.
由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f'(0)=0.
59.
60.61.1;本題考查的知識點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.62.1/2本題考查的知識點(diǎn)為極限的運(yùn)算.
63.1/21/2解析:
64.
解析:
65.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)解析:
66.1
67.68.0本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.
所給冪級數(shù)為不缺項情形
因此收斂半徑為0.69.-1
70.
71.
72.
73.
74.
則
75.
76.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%77.由一階線性微分方程通解公式有
78.
79.由等價無窮小量的定義可知
80.
81.
82.
83.
84.由二重積分物理意義知
85.
86.函數(shù)的定義域為
注意
87.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
88.89.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
90.
列表:
說明
91.
92.
93.94.本題考查的知識點(diǎn)為計算二重積分.
將區(qū)域D表示為
問題的難點(diǎn)在于寫出區(qū)域D的表達(dá)式.
本題出現(xiàn)的較常見的問題是不能正確地將區(qū)域D表示出來,為了避免錯誤,考生應(yīng)該畫出區(qū)域D的圖形,利用圖形確定區(qū)域D的表達(dá)式.
與應(yīng)試模擬第4套第27題相仿,初學(xué)者對此常常感到困難.只要畫出圖來,認(rèn)真分析-下,就可以寫出極坐標(biāo)系下D的表達(dá)式.
95.96.y"-2y'=x為二階常系數(shù)線性微
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科技學(xué)院《環(huán)境材料》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東金融學(xué)院《設(shè)計色彩》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東建設(shè)職業(yè)技術(shù)學(xué)院《壓焊方法與設(shè)備》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東機(jī)電職業(yè)技術(shù)學(xué)院《測井?dāng)?shù)據(jù)處理與解釋》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工業(yè)大學(xué)《教育與心理統(tǒng)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工貿(mào)職業(yè)技術(shù)學(xué)院《國際商務(wù)函電》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東東軟學(xué)院《新聞理論》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東創(chuàng)新科技職業(yè)學(xué)院《水土保持原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《光合作用原初反應(yīng)》課件
- 廣東白云學(xué)院《數(shù)字信號處理及實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 數(shù)學(xué)-2025年高考綜合改革適應(yīng)性演練(八省聯(lián)考)
- 景區(qū)旅游安全風(fēng)險評估報告
- 建筑消防設(shè)施檢測誠信承諾書
- ojt問答題未升版ojt204
- 五年級語文滲透法制教育滲透點(diǎn)教案呈現(xiàn)
- 貝雷片-潮白新河鋼棧橋及鋼平臺計算說明書
- VF程序設(shè)計知識要點(diǎn)
- 凱普21種基因型HPV分型與其它比較
- 小學(xué)數(shù)學(xué)小專題講座《數(shù)學(xué)教學(xué)生活化 》(課堂PPT)
- 雞場養(yǎng)殖情況記錄登記表
- 高壓配電柜系列產(chǎn)品出廠檢驗規(guī)范
評論
0/150
提交評論