版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年云南省昆明市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面
2.()A.A.1B.2C.1/2D.-1
3.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
4.
5.下列說(shuō)法中不能提高梁的抗彎剛度的是()。
A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)
6.
7.
8.
9.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
10.設(shè)y=5x,則y'=A.A.5xln5
B.5x/ln5
C.x5x-1
D.5xlnx
11.A.0B.2C.2f(-1)D.2f(1)
12.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為
A.2B.-2C.3D.-313.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。
A.30N·m,逆時(shí)針?lè)较駼.30N·m,順時(shí)針?lè)较駽.60N·m,逆時(shí)針?lè)较駾.60N·m,順時(shí)針?lè)较?/p>
14.設(shè)函數(shù)y=2x+sinx,則y'=
A.1+cosxB.1-cosxC.2+cosxD.2-cosx15.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
16.
17.A.A.
B.
C.
D.
18.()A.A.
B.
C.
D.
19.下列關(guān)系式中正確的有()。A.
B.
C.
D.
20.
21.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件22.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π
23.
24.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)25.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
26.
27.()。A.
B.
C.
D.
28.點(diǎn)作曲線運(yùn)動(dòng)時(shí),“勻變速運(yùn)動(dòng)”指的是()。
A.aτ為常量
B.an為常量
C.為常矢量
D.為常矢量
29.微分方程(y)2+(y)3+sinx=0的階數(shù)為
A.1B.2C.3D.430.若x→x0時(shí),α(x)、β(x)都是無(wú)窮小(β(x)≠0),則x→x0時(shí),α(x)/β(x)A.A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型
31.設(shè)f(x)=sin2x,則f(0)=()
A.-2B.-1C.0D.2
32.
33.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件
34.
35.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
36.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。
A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)
B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為
C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
37.
A.-ex
B.-e-x
C.e-x
D.ex
38.1954年,()提出了一個(gè)具有劃時(shí)代意義的概念——目標(biāo)管理。
A.西蒙B.德魯克C.梅奧D.亨利.甘特39.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
40.
41.
A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散
42.
43.
44.
45.
46.A.
B.
C.
D.
47.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無(wú)窮小B.低階無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小48.A.0B.1C.2D.449.若x0為f(x)的極值點(diǎn),則().A.A.f(x0)必定存在,且f(x0)=0
B.f(x0)必定存在,但f(x0)不-定等于零
C.f(x0)不存在或f(x0)=0
D.f(x0)必定不存在
50.
二、填空題(20題)51.
52.
53.求54.
55.
56.
57.
58.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。59.
60.61.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為_(kāi)___。62.設(shè)y=3+cosx,則y=.
63.
64.65.
66.
67.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
68.
69.
70.三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
72.
73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.74.證明:75.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
76.
77.
78.79.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.80.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
82.
83.求微分方程的通解.
84.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
85.86.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).87.88.求曲線在點(diǎn)(1,3)處的切線方程.89.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
90.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)91.求曲線的漸近線.92.93.
94.
95.
96.設(shè)y=e-3x+x3,求y'。
97.
98.99.
100.
五、高等數(shù)學(xué)(0題)101.
六、解答題(0題)102.
參考答案
1.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
2.C由于f'(2)=1,則
3.D由拉格朗日定理
4.B
5.A
6.D
7.D解析:
8.C
9.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
10.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。
11.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
12.C解析:
13.D
14.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.
15.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見(jiàn)的錯(cuò)誤是選D.這是由于考生沒(méi)有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
16.C
17.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).
可知應(yīng)選C.
18.A
19.B本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時(shí),x>x2,因此
可知應(yīng)選B。
20.A
21.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
22.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論.
由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.
故知應(yīng)選C.
23.D解析:
24.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).
這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且
本題常見(jiàn)的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.
25.B本題考查的知識(shí)點(diǎn)為不定積分換元積分法。
因此選B。
26.B
27.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。
28.A
29.B
30.D
31.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故選D。
32.C
33.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過(guò)來(lái)卻不行,如函數(shù)f(x)=故選A。
34.C
35.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
36.C
37.C由可變上限積分求導(dǎo)公式有,因此選C.
38.B解析:彼得德魯克最早提出了目標(biāo)管理的思想。
39.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
40.D解析:
41.C解析:
42.A
43.D
44.C解析:
45.C
46.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
47.B
48.A本題考查了二重積分的知識(shí)點(diǎn)。
49.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(x)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見(jiàn)的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f(x0)=0”認(rèn)為是極值的充分必要條件.
50.C解析:
51.解析:
52.
解析:
53.=0。
54.
55.
56.0
57.[01)∪(1+∞)58.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx
59.
本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.
60.tanθ-cotθ+C61.(1,-1)62.-sinX.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.
63.4
64.
65.本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
66.y=1
67.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。68.本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得
69.70.071.由等價(jià)無(wú)窮小量的定義可知
72.
73.
74.
75.函數(shù)的定義域?yàn)?/p>
注意
76.
77.
則
78.
79.
80.
81.
82.由一階線性微分方程通解公式有
83.
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
85.
86.
列表:
說(shuō)明
87.88.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
89.由二重積分物理意義知
90.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
91.由于
可知y=0為所給曲線的水平漸近線.由于
,可知x=2為所給曲線的鉛直漸近線.本題考查的知識(shí)點(diǎn)為求曲線的漸近線.
注意漸近線的定義,只需分別研究水平漸近線與鉛直漸近線:
若,則直線y=c為曲線y=f(x)的水平漸近線;
若,則直線x=x0為曲線y=f(x)的鉛直漸近線.
有些特殊情形還需研究單邊極限.
本題中考生出現(xiàn)的較多的錯(cuò)誤是忘掉了鉛直漸近線.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省松原市前郭縣南部學(xué)區(qū)2024~2025學(xué)年度七年級(jí)上期中測(cè)試.名校調(diào)研 生物(含答案)
- 2024年度云南省高校教師資格證之高等教育法規(guī)通關(guān)試題庫(kù)(有答案)
- 低空經(jīng)濟(jì)產(chǎn)業(yè)園技術(shù)風(fēng)險(xiǎn)分析
- 贛南師范大學(xué)《馬克思主義發(fā)展史》2022-2023學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《地理信息系統(tǒng)原理》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《學(xué)校體育學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《數(shù)學(xué)分析二》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《小學(xué)數(shù)學(xué)課程與教學(xué)研究》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《體育游戲》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《學(xué)前兒童保育學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年房產(chǎn)贈(zèng)與合同范本(31篇)
- 2024年中國(guó)移動(dòng)校園招聘高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 物理透鏡 課件 2024-2025學(xué)年蘇科版八年級(jí)上冊(cè)物理
- 人教版2024七年級(jí)上冊(cè)英語(yǔ)各單元單詞短語(yǔ)句型匯編
- 【智慧醫(yī)療】醫(yī)療健康產(chǎn)業(yè)園概念策劃方案(XQ)
- 智能分揀與配送中心建設(shè)方案
- 2024中國(guó)移動(dòng)公司招聘高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 2024-2030年中國(guó)凈水器和過(guò)濾器行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 2024年計(jì)算機(jī)二級(jí)MS Office考試題庫(kù)500題(含答案)
- 22G101三維彩色立體圖集
- 從創(chuàng)意到創(chuàng)業(yè)智慧樹(shù)知到期末考試答案章節(jié)答案2024年湖南師范大學(xué)
評(píng)論
0/150
提交評(píng)論