版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年山西省朔州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.()。A.3B.2C.1D.0
2.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().
A.-sinx
B.cosx
C.
D.
3.()有助于同級(jí)部門或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。
A.上行溝通B.下行溝通C.平行溝通D.分權(quán)
4.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.無法確定斂散性
5.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
6.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
7.
8.
9.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
10.
A.-ex
B.-e-x
C.e-x
D.ex
11.
12.若級(jí)數(shù)在x=-1處收斂,則此級(jí)數(shù)在x=2處
A.發(fā)散B.條件收斂C.絕對(duì)收斂D.不能確定
13.輥軸支座(又稱滾動(dòng)支座)屬于()。
A.柔索約束B.光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束
14.
A.
B.
C.
D.
15.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
16.A.A.1
B.3
C.
D.0
17.
18.
19.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
20.
21.
22.
23.A.A.必條件收斂B.必絕對(duì)收斂C.必發(fā)散D.收斂但可能為條件收斂,也可能為絕對(duì)收斂
24.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計(jì)算時(shí),用以考慮縱向彎曲彎曲影響的系數(shù)是()。
A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)
25.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
26.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無窮小B.等價(jià)無窮小C.同階無窮小,但不是等價(jià)無窮小D.低階無窮小
27.A.A.1/4B.1/2C.1D.2
28.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為vM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
29.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
30.
A.0
B.
C.1
D.
31.等于()。A.-1B.-1/2C.1/2D.1
32.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
33.
34.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
35.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值36.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny
B.3y3xlny
C.3xy3x
D.3xy3x-1
37.下列說法中不能提高梁的抗彎剛度的是()。
A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)38.A.A.
B.
C.
D.
39.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
40.A.A.2B.1C.0D.-1
41.
42.
43.
A.arcsinb-arcsina
B.
C.arcsinx
D.0
44.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。
A.eB.1C.1+e2
D.ln245.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
46.
47.
48.設(shè)un≤aυn(n=1,2,…)(a>0),且收斂,則()A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確
49.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
50.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線二、填空題(20題)51.
52.
53.
54.
55.
56.57.設(shè)z=x2y2+3x,則58.59.設(shè)y=e3x知,則y'_______。60.
=_________.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.72.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.73.求曲線在點(diǎn)(1,3)處的切線方程.74.
75.
76.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).77.將f(x)=e-2X展開為x的冪級(jí)數(shù).
78.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
79.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則80.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.81.82.83.求微分方程的通解.84.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
85.求微分方程y"-4y'+4y=e-2x的通解.
86.
87.
88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.89.證明:90.
四、解答題(10題)91.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.
92.設(shè)
93.
94.
95.
96.
97.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.曲線y=x3一12x+1在區(qū)間(0,2)內(nèi)()。
A.凸且單增B.凹且單減C.凸且單增D.凹且單減六、解答題(0題)102.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.
參考答案
1.A
2.C解析:本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
3.C解析:平行溝通有助于同級(jí)部門或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。
4.A本題考察了級(jí)數(shù)的絕對(duì)收斂的知識(shí)點(diǎn)。
5.C
6.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
7.A
8.C
9.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
10.C由可變上限積分求導(dǎo)公式有,因此選C.
11.B
12.C由題意知,級(jí)數(shù)收斂半徑R≥2,則x=2在收斂域內(nèi)部,故其為絕對(duì)收斂.
13.C
14.D
故選D.
15.C
16.B本題考查的知識(shí)點(diǎn)為重要極限公式.可知應(yīng)選B.
17.C
18.C
19.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
20.D
21.B
22.B解析:
23.D
24.D
25.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
26.C本題考查的知識(shí)點(diǎn)為無窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無窮小,但不是等價(jià)無窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小盧與無窮小α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
27.C
28.B
29.A
30.A
31.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。
故應(yīng)選C。
32.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
33.C
34.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).
y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。
35.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
36.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
z=y3x
是關(guān)于y的冪函數(shù),因此
故應(yīng)選D.
37.A
38.D
39.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對(duì)于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。
40.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
41.D
42.A
43.D
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
故應(yīng)選D.
44.C
45.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
46.C
47.A
48.D由正項(xiàng)級(jí)數(shù)的比較判定法知,若un≤υn,則當(dāng)收斂時(shí),也收斂;若也發(fā)散,但題設(shè)未交待un與υn的正負(fù)性,由此可分析此題選D。
49.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
50.D
51.
52.2x-4y+8z-7=053.-24.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
54.
55.
56.1/3本題考查了定積分的知識(shí)點(diǎn)。57.2xy(x+y)+3本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
由于z=x2y2+3x,可知
58.59.3e3x
60.。
61.
62.(e-1)2
63.
64.
65.
66.xex(Asin2x+Bcos2x)由特征方程為r2-2r+5=0,得特征根為1±2i,而非齊次項(xiàng)為exsin2x,因此其特解應(yīng)設(shè)為y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).
67.
解析:
68.
69.
解析:
70.
71.
72.
73.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
74.
75.
76.
列表:
說明
77.
78.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%79.由等價(jià)無窮小量的定義可知80.由二重積分物理意義知
81.
82.
83.
84.
85.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
86.
則
87.88.函數(shù)的定義域?yàn)?/p>
注意
89.
90.由一階線性微
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件開發(fā)二手房買賣合同樣本
- 城市排水招投標(biāo)廉潔合同模板
- 墻繪裝飾施工合同
- 新能源項(xiàng)目招投標(biāo)合同風(fēng)險(xiǎn)防范
- 房屋戶外照明安裝合同
- 教育培訓(xùn)機(jī)構(gòu)裝修施工合同
- 國際實(shí)驗(yàn)室地暖系統(tǒng)安裝工程合同
- 勞動(dòng)合同簽訂與解除規(guī)范
- 水利工程建造師聘用合同范例
- 交通運(yùn)輸設(shè)備維修合同
- 2024年四川省達(dá)州市中考英語試題含解析
- 金融求職自我介紹
- 標(biāo)志設(shè)計(jì)(全套課件88P)
- 2023年高考物理一輪復(fù)習(xí)練習(xí)題:靜電場(chǎng)及其應(yīng)用(含基礎(chǔ)、提升兩套)
- 鋰離子電池行業(yè)發(fā)展趨勢(shì)
- 第十八章 正比例函數(shù)和反比例函數(shù)(5類壓軸題專練)
- 單項(xiàng)式乘多項(xiàng)式教案
- 遼寧省大連市中山區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期中化學(xué)試題
- 天津市天津市紅橋區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期10月期中英語試題
- 老舊房子改造合同模板
- 幼兒園實(shí)習(xí)生總結(jié)會(huì)方案
評(píng)論
0/150
提交評(píng)論