黑龍江省哈爾濱市第十九中學(xué)2021-2022學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
黑龍江省哈爾濱市第十九中學(xué)2021-2022學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
黑龍江省哈爾濱市第十九中學(xué)2021-2022學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
黑龍江省哈爾濱市第十九中學(xué)2021-2022學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
黑龍江省哈爾濱市第十九中學(xué)2021-2022學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的函數(shù)滿足,且當(dāng)時,,則方程的最小實(shí)根的值為()A. B. C. D.2.已知、分別是雙曲線的左、右焦點(diǎn),過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點(diǎn)、,過點(diǎn)作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.3.若的二項(xiàng)式展開式中二項(xiàng)式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.44.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.55.設(shè)全集,集合,.則集合等于()A. B. C. D.6.已知拋物線,過拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.7.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.8.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.9.函數(shù)在的圖象大致為A. B.C. D.10.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.11.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.12.已知雙曲線(,),以點(diǎn)()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.點(diǎn)是曲線()圖象上的一個定點(diǎn),過點(diǎn)的切線方程為,則實(shí)數(shù)k的值為______.14.設(shè)實(shí)數(shù)x,y滿足,則點(diǎn)表示的區(qū)域面積為______.15.實(shí)數(shù),滿足約束條件,則的最大值為__________.16.已知向量,且向量與的夾角為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.18.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)如圖,內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設(shè),表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.20.(12分)已知首項(xiàng)為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.21.(12分)[選修4-5:不等式選講]設(shè)函數(shù).(1)求不等式的解集;(2)已知關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.22.(10分)已知是拋物線的焦點(diǎn),點(diǎn)在軸上,為坐標(biāo)原點(diǎn),且滿足,經(jīng)過點(diǎn)且垂直于軸的直線與拋物線交于、兩點(diǎn),且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點(diǎn),若,求點(diǎn)到直線的最大距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

先確定解析式求出的函數(shù)值,然后判斷出方程的最小實(shí)根的范圍結(jié)合此時的,通過計(jì)算即可得到答案.【詳解】當(dāng)時,,所以,故當(dāng)時,,所以,而,所以,又當(dāng)時,的極大值為1,所以當(dāng)時,的極大值為,設(shè)方程的最小實(shí)根為,,則,即,此時令,得,所以最小實(shí)根為411.故選:C.【點(diǎn)睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.2.B【解析】

設(shè)點(diǎn)位于第二象限,可求得點(diǎn)的坐標(biāo),再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進(jìn)而可求得雙曲線的離心率.【詳解】設(shè)點(diǎn)位于第二象限,由于軸,則點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為,即點(diǎn),由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算,解答的關(guān)鍵就是得出、、的等量關(guān)系,考查計(jì)算能力,屬于中等題.3.C【解析】

由二項(xiàng)式系數(shù)性質(zhì),的展開式中所有二項(xiàng)式系數(shù)和為計(jì)算.【詳解】的二項(xiàng)展開式中二項(xiàng)式系數(shù)和為,.故選:C.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)式系數(shù)性質(zhì)是解題關(guān)鍵.4.D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點(diǎn)睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.5.A【解析】

先算出集合,再與集合B求交集即可.【詳解】因?yàn)榛?所以,又因?yàn)?所以.故選:A.【點(diǎn)睛】本題考查集合間的基本運(yùn)算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.6.A【解析】

設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.7.D【解析】

根據(jù)框圖,模擬程序運(yùn)行,即可求出答案.【詳解】運(yùn)行程序,,

,,,,,結(jié)束循環(huán),故輸出,故選:D.【點(diǎn)睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.8.C【解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當(dāng)時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.9.A【解析】

因?yàn)?,所以排除C、D.當(dāng)從負(fù)方向趨近于0時,,可得.故選A.10.C【解析】

由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【點(diǎn)睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.11.C【解析】

將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.12.A【解析】

求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點(diǎn),且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因?yàn)?,所以圓心到的距離為:,即,因?yàn)椋越獾茫蔬xA.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題.對于離心率求解問題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

求出導(dǎo)函數(shù),由切線斜率為4即導(dǎo)數(shù)為4求出切點(diǎn)橫坐標(biāo),再由切線方程得縱坐標(biāo)后可求得.【詳解】設(shè),由題意,∴,,,即,∴,.故答案為:1.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,函數(shù)圖象某點(diǎn)處的切線的斜率就是該點(diǎn)處導(dǎo)數(shù)值.本題屬于基礎(chǔ)題.14.【解析】

先畫出滿足條件的平面區(qū)域,求出交點(diǎn)坐標(biāo),利用定積分即可求解.【詳解】畫出實(shí)數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點(diǎn)睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.15.10【解析】

畫出可行域,根據(jù)目標(biāo)函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當(dāng)經(jīng)過點(diǎn)時,截距最小,最大解得的最大值為10故答案為:10【點(diǎn)睛】考查可行域的畫法及目標(biāo)函數(shù)最大值的求法,基礎(chǔ)題.16.1【解析】

根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】

(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.18.(1);(2)【解析】

(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項(xiàng)求和法可得答案.【詳解】(1)①,當(dāng)時,,,當(dāng)時,②,①②得:,,適合,故;(2),.【點(diǎn)睛】本題考查法求數(shù)列的通項(xiàng)公式,考查裂項(xiàng)求和,是基礎(chǔ)題.19.(1)見解析(2),最大值.【解析】

(1)先證明,,故平面ADC.由,即得證;(2)可證明平面ABC,結(jié)合條件表示出,利用均值不等式,即得解.【詳解】(1)證明:∵四邊形DCBE為平行四邊形,∴,.∵平面ABC,平面ABC,∴.∵AB是圓O的直徑,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,當(dāng)且僅當(dāng),即時取等號,∴當(dāng)時,體積有最大值.【點(diǎn)睛】本題考查了線面垂直的證明和三棱錐的體積,考查了學(xué)生邏輯推理,空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20.(1)見解析;(2)【解析】

(1)由原式可得,等式兩端同時除以,可得到,即可證明結(jié)論;(2)由(1)可求得的表達(dá)式,進(jìn)而可求得的表達(dá)式,然后求出的前項(xiàng)和即可.【詳解】(1)證明:因?yàn)?所以,所以,從而,因?yàn)?所以,故數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因?yàn)?所以,則.【點(diǎn)睛】本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項(xiàng)和公式的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于中檔題.21.(1)(2)【解析】

(1)零點(diǎn)分段去絕對值解不等式即可(2)由題在上有解,去絕對值分離變量a即可.【詳解】(1)不等式,即等價于或或解得,所以原不等式的解集為;(2)當(dāng)時,不等式,即,所以在上有解即在上有解,所以,.【點(diǎn)睛】本題考查絕對值不等式解法,不等式有解求參數(shù),熟記零點(diǎn)分段,熟練處理不等式有解問題是關(guān)鍵,是中檔題.22.(1);(2).【解析】

(1)求得點(diǎn)的坐標(biāo),可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論