版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.2.已知隨機變量服從正態(tài)分布,,()A. B. C. D.3.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.4.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.5.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.6.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或7.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.8.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.9.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度10.已知,,由程序框圖輸出的為()A.1 B.0 C. D.11.元代數(shù)學家朱世杰的數(shù)學名著《算術啟蒙》是中國古代代數(shù)學的通論,其中關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.612.函數(shù)(),當時,的值域為,則的范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.14.已知復數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_____.15.已知三棱錐的四個頂點在球的球面上,,是邊長為2的正三角形,,則球的體積為__________.16.設直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的定義域為.(1)求實數(shù)的取值范圍;(2)設實數(shù)為的最小值,若實數(shù),,滿足,求的最小值.18.(12分)已知函數(shù),,且.(1)當時,求函數(shù)的減區(qū)間;(2)求證:方程有兩個不相等的實數(shù)根;(3)若方程的兩個實數(shù)根是,試比較,與的大小,并說明理由.19.(12分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內(nèi)的交通違章情況進行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中20.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標.21.(12分)已知,均為正項數(shù)列,其前項和分別為,,且,,,當,時,,.(1)求數(shù)列,的通項公式;(2)設,求數(shù)列的前項和.22.(10分)的內(nèi)角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎題.2.B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.3.C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數(shù)學運算的能力,屬于基礎題.4.B【解析】
利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現(xiàn)了數(shù)學運算、直觀想象等核心素養(yǎng).5.D【解析】
設圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎題.6.D【解析】
根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.7.C【解析】
先畫出函數(shù)圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調(diào)遞增,且,所以當時,;當時,,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉化思想和運算能力,屬于難題.8.C【解析】
作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.9.D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎題型.10.D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.11.B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應是一個等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應是一個等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時,的值記為有,則有;記執(zhí)行第次循環(huán)時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環(huán)結構和數(shù)列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數(shù)列關系(比如相鄰項滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項積等).12.B【解析】
首先由,可得的范圍,結合函數(shù)的值域和正弦函數(shù)的圖像,可求的關于實數(shù)的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B【點睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關鍵,側重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,14.-1【解析】
由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數(shù)的概念和運算,屬于基礎題.15.【解析】
由題意可得三棱錐的三條側棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:【點睛】此題考查球的體積,幾何體的外接球,考查空間想象能力,計算能力,屬于中檔題.16.【解析】
不妨設雙曲線,焦點,令,由的長為實軸的二倍能夠推導出的離心率.【詳解】不妨設雙曲線,焦點,對稱軸,由題設知,因為的長為實軸的二倍,,,,故答案為.【點睛】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應先將用有關的一些量表示出來,再利用其中的一些關系構造出關于的等式,從而求出的值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)首先通過對絕對值內(nèi)式子符號的討論,將不等式轉化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數(shù)定義域為,即恒成立,所以恒成立由單調(diào)性可知當時,有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當且僅當,,時,等號成立【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應用,意在考查學生的轉化能力和計算求解能力.18.(1)(2)詳見解析(3)【解析】
試題分析:(1)當時,,由得減區(qū)間;(2)因為,所以,因為所以,方程有兩個不相等的實數(shù)根;(3)因為,,所以試題解析:(1)當時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個不相等的實數(shù)根;(3)因為,,又在和增,在減,所以.考點:利用導數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關系19.,概率為;列聯(lián)表詳見解析,有的把握認為交通安全意識與性別有關;.【解析】
根據(jù)頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值得出結論;用分層抽樣法求得抽取各分數(shù)段人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識強的概率根據(jù)題意可知,安全意識強的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識強安全意識不強合計男性女性合計所以有的把握認為交通安全意識與性別有關.由題意可知分數(shù)在,的分別為名和名,所以分層抽取的人數(shù)分別為名和名,設的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.【點睛】本題考查獨立性檢驗應用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.20.【解析】
利用極坐標方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門24年小學3年級上冊英語第四單元綜合卷
- 急救中心患者跌倒事故報告流程
- 商業(yè)銀行內(nèi)部審計存在的問題及對策
- 小區(qū)安全員協(xié)議書(2篇)
- 多學科團隊合作安寧療護方案
- 生態(tài)污水處理技術的移交方案
- 電力公司中層干部德能勤績廉總結
- 廈門-PEP-2024年小學4年級上冊英語第一單元測驗卷
- 社交媒體應用軟件合作開發(fā)協(xié)議書
- 中小學課后餐飲服務方案
- 管樁水平承載力計算
- 國美香港借殼上市過程及策略分析
- 污水處理站過濾罐濾料更換方案
- 攝影基礎知識入門與技術.ppt
- 民事案件卷宗目錄封面11
- 2022年2022年古籍樣式排版模板
- 藝術裝飾藝術運動
- 樊登讀書會營銷策略分析
- 建設單位安全生產(chǎn)管理體系(完整版)
- 國潮風喜迎中秋節(jié)傳統(tǒng)節(jié)日介紹主題班會PPT模板
- 幼兒園參觀學?;顒臃桨?篇
評論
0/150
提交評論