版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年河北省滄州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.A.2B.1C.0D.-1
2.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()
A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較
3.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
4.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無(wú)水平漸近線,又無(wú)鉛直漸近線
5.A.1B.0C.2D.1/2
6.
7.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶
8.
9.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
10.
11.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
12.A.1/x2
B.1/x
C.e-x
D.1/(1+x)2
13.
14.
15.A.A.0B.1C.2D.任意值
16.
17.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
18.A.e-2
B.e-1
C.e
D.e2
19.A.0或1B.0或-1C.0或2D.1或-1
20.
二、填空題(20題)21.
22.
23.
24.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.
25.
26.
27.
28.
29.
30.
31.32.
33.
34.
35.
36.
37.
38.
39.40.三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
43.
44.
45.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.47.求曲線在點(diǎn)(1,3)處的切線方程.48.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
50.求微分方程y"-4y'+4y=e-2x的通解.
51.52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.53.
54.
55.56.求微分方程的通解.57.證明:58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).59.將f(x)=e-2X展開為x的冪級(jí)數(shù).60.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.
70.
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.求函數(shù)的二階導(dǎo)數(shù)y''
參考答案
1.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
2.A由f"(x)>0說(shuō)明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。
3.D
4.A
5.C
6.A
7.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。
8.B
9.B
10.A
11.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
12.A本題考查了反常積分的斂散性的知識(shí)點(diǎn)。
13.A解析:
14.C
15.B
16.A
17.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性。
18.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.
19.A
20.B解析:
21.5
22.
本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
23.24.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.
通常求解的思路為:
先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.
比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).
由y=x3-2x+1,可得
Y'=3x2-2.
令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有
Y'=3x2-2>0.
可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.
注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.
本題中常見的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較
從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.
25.
26.00解析:
27.x=-3x=-3解析:
28.7/529.2xsinx2;本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
30.3x2+4y3x2+4y解析:
31.
本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.
32.
本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
本題中常見的錯(cuò)誤有
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
33.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)解析:
34.
35.2
36.
37.
38.-3sin3x-3sin3x解析:39.F(sinx)+C.
本題考查的知識(shí)點(diǎn)為不定積分的換元法.
40.41.由等價(jià)無(wú)窮小量的定義可知
42.
43.44.由一階線性微分方程通解公式有
45.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
46.
47.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.
49.函數(shù)的定義域
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024商場(chǎng)室內(nèi)裝飾設(shè)計(jì)合同
- 2024年國(guó)際文化藝術(shù)交流活動(dòng)策劃合同
- 幼兒園大班主題《勞動(dòng)最光榮》教案
- 2024年廣告發(fā)布服務(wù)合同格式
- 2024年建筑勞務(wù)分包合同書
- 基于社交網(wǎng)絡(luò)的智能體協(xié)同進(jìn)化研究
- 2024醫(yī)療廢物無(wú)害化處理服務(wù)合同
- 科普廣告效果評(píng)估研究
- 佳豪大數(shù)據(jù)分析與挖掘研究
- 家用紡織品市場(chǎng)品牌差異化競(jìng)爭(zhēng)策略考核試卷
- 道德與法治-《公民身份從何而來(lái)》觀課報(bào)告
- 市政工程資料整理與歸檔匯編
- 初中生物說(shuō)題
- 《一次函數(shù)》單元作業(yè)設(shè)計(jì)
- 網(wǎng)絡(luò)營(yíng)銷試卷
- 斯德哥爾摩生態(tài)城市空間規(guī)劃的路徑、特征與啟示
- C羅英文介紹課件
- 反假幣培訓(xùn)課件
- 教學(xué)設(shè)計(jì) 平面鏡成像教學(xué)設(shè)計(jì) 市賽一等獎(jiǎng)
- 年前突破母親小說(shuō)
- 房樹人基礎(chǔ)知識(shí)
評(píng)論
0/150
提交評(píng)論