2022-2023學(xué)年江蘇省南通市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年江蘇省南通市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年江蘇省南通市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年江蘇省南通市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年江蘇省南通市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年江蘇省南通市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)

3.

4.A.A.2B.-1/2C.1/2eD.(1/2)e1/2

5.A.-1

B.0

C.

D.1

6.下列等式成立的是

A.A.

B.B.

C.C.

D.D.

7.A.

B.

C.

D.

8.A.A.>0B.<0C.=0D.不存在9.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0

B.

C.

D.π

10.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]

B.[-1,1]

C.[1,+∞)

D.(-∞,+∞)

11.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2

12.

13.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

14.

15.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1

16.構(gòu)件承載能力不包括()。

A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性

17.A.0B.1C.2D.不存在

18.

19.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。

A.斜交B.垂直C.平行D.重合20.A.A.2B.1C.0D.-1二、填空題(20題)21.

22.

23.函數(shù)f(x)=2x2-x+1,在區(qū)間[-1,2]上滿足拉格朗日中值定理的ξ=_________。

24.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。

25.26.f(x)=lnx,則f[f(x)]=__________。

27.

28.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為____。

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.設(shè)函數(shù)y=x3,則y'=________.

40.三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.43.44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

45.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

46.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

47.48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則49.求曲線在點(diǎn)(1,3)處的切線方程.

50.

51.

52.

53.54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

55.求微分方程y"-4y'+4y=e-2x的通解.

56.證明:57.求微分方程的通解.

58.

59.將f(x)=e-2X展開為x的冪級(jí)數(shù).60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.設(shè)y=y(x)由方程y2-3xy+x3=1確定,求dy.62.計(jì)算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.63.64.

65.

66.67.求在區(qū)間[0,π]上由曲線y=sinx與y=0所圍成的圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積Vx。

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.下列等式中正確的是()。A.

B.

C.

D.

六、解答題(0題)72.

參考答案

1.C

2.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.

3.D

4.B

5.C

6.C本題考查了函數(shù)的極限的知識(shí)點(diǎn)

7.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為

8.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。

9.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。

10.B

11.A由于

可知應(yīng)選A.

12.A

13.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

14.B

15.B本題考查的知識(shí)點(diǎn)為可變上限的積分.

由于,從而知

可知應(yīng)選B.

16.D

17.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.

由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.

18.D

19.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2

20.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)

x=-1為f(x)的間斷點(diǎn),故選D。

21.發(fā)散本題考查了級(jí)數(shù)的斂散性(比較判別法)的知識(shí)點(diǎn).

22.

解析:

23.1/2

24.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

25.

26.則

27.28.(1,-1)

29.1/21/2解析:

30.

31.(-∞2)

32.

33.-1本題考查了利用導(dǎo)數(shù)定義求極限的知識(shí)點(diǎn)。

34.

35.

36.2m2m解析:

37.12x12x解析:

38.0

39.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=x3,所以y'=3x2

40.0

41.

列表:

說明

42.

43.

44.由二重積分物理意義知

45.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

46.

47.

48.由等價(jià)無窮小量的定義可知49.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

50.

51.由一階線性微分方程通解公式有

52.

53.54.函數(shù)的定義域?yàn)?/p>

注意

55.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

56.

57.

58.

59.

60.

61.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.

若y=y(x)由方程F(x,y)=0確定,求dy常常有兩種方法.

(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論