rank是靜態(tài)的ranking演算法_第1頁(yè)
rank是靜態(tài)的ranking演算法_第2頁(yè)
rank是靜態(tài)的ranking演算法_第3頁(yè)
rank是靜態(tài)的ranking演算法_第4頁(yè)
rank是靜態(tài)的ranking演算法_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

7.4HITSDate:2008/11/20Speaker:Fan,ChouBinAdvisor:Dr.Koh,JiaLingOutlineIntroductionHITSHITSAlgorithmRelationshipswithCo-CitationandBibliographicCouplingStrengthsandWeaknessesofHITSIntroductionHITSHITSstandsforHypertextInducedTopicSearch.UnlikePageRank

whichisastaticrankingalgorithm,HITSissearchquerydependent.Whentheuserissuesasearchquery,HITSfirstexpandsthelistofrelevantpagesreturnedbyasearchengineandthenproducestworankingsoftheexpandedsetofpages,authorityrankingandhubranking.IntroductionHITSAnauthorityisapagewithmanyin-links.

->ThepagemayhavegoodorauthoritativecontentonsometopicAhubisapagewithmanyout-links.

->Thepageservesasanorganizeroftheinformationonaparticulartopicandpointstomanygoodauthoritypagesonthetopic.IntroductionHITSIntroductionHITSThekeyideaofHITSisthatagoodhubpointstomanygoodauthoritiesandagoodauthorityispointedtobymanygoodhubs.Authoritiesandhubshaveamutualreinforcementrelationship.HITSAlgorithmGivenabroadsearchqueryq,HITScollectsasetofpagesasfollows:

1.Itsendsthequeryqtoasearchenginesystem.Itthencollectsthighestrankedpages.ThissetiscalledtherootsetW.

2.ItthengrowsWbyincludinganypagepointedtobyapageinWandanypagethatpointstoapageinW.ThisgivesalargersetcalledS.,calledthebaseset.

*ThealgorithmrestrictsitssizebyallowingeachpageinWtobringatmostkpagesHITSAlgorithmHITSthenworksonthepagesinSset,assignseverypageinSanauthorityscoreandahubscore.Letthenumberofpagestobestudiedben,useG=(V,E)todenotethe(directed)linkgraphofS.

Visthesetofpages(ornodes)

Eisthesetofdirectededges(orlinks).

Ltodenotetheadjacencymatrixofthegraph.HITSAlgorithmHITSthenworksonthepagesinSset,assignseverypageinSanauthorityscoreandahubscore.Letthenumberofpagestobestudiedben,useG=(V,E)todenotethe(directed)linkgraphofS.

Visthesetofpages(ornodes)

Eisthesetofdirectededges(orlinks).

Ltodenotetheadjacencymatrixofthegraph.HITSAlgorithmLettheauthorityscoreofthepageibea(i),andthehubscoreofpageIbeh(i).Themutualreinforcingrelationshipofthetwoscoresisrepresentedasfollows:HITSAlgorithmWritingtheminthematrixform,weuseatodenotethecolumnvectorwithalltheauthorityscores,andusehtodenotethecolumnvectorwithallthehubscores.

a=(a(1),a(2),…,a(n))T,

h=(h(1),h(2),…,h(n))T.HITSAlgorithmThecomputationofauthorityscoresandhubscoresisbasicallythesameasthecomputationofthePageRankscoresusingthepoweriterationmethod.weuseakandhktodenoteauthorityandhubscoresatthekthiteration,theiterativeprocessesforgeneratingthefinalsolutionsareHITSAlgorithmAftereachiteration,thevaluesarealsonormalized(tokeepthemsmall)sothat..HITSAlgorithmHITSAlgorithmTheiterationendsafterthe1-normsoftheresidualvectorsarelessthansomethresholdsHence,thealgorithmfindstheprincipaleigenvectorsat“equilibrium”asinPageRank.Thepageswithlargeauthorityandhubscoresarebetterauthoritiesandhubsrespectively.HITSwillselectafewtoprankedpagesasauthoritiesandhubs,andreturnthemtotheuser.HITSAlgorithmAlthoughHITSwillalwaysconverge,thereisaproblemwithuniquenessoflimiting(converged)authorityandhubvectors.Itisshownthatforcertaintypesofgraphs,differentinitializationstothepowermethodproducedifferentfinalauthorityandhubvectors.Someresultscanbeinconsistentorwrong.HITSAlgorithmTheHITSalgorithmfindstheprincipaleigenvectors,whichinasenserepresentthemostdenselyconnectedauthoritiesandhubsinthegraphGdefinedbyaquery.However,insomecases,wemayalsobeinterestedinfindingseveraldenselylinkedcollectionsofhubsandauthoritiesamongthesamebasesetofpages.Eachofsuchcollectionscouldpotentially

berelevanttothequerytopic,buttheycouldbewell-separatedfromoneanotherinthegraphG.HITSAlgorithmForexample,

Thequerystringmaybeambiguouswithseveralverydifferentmeanings,e.g.,“jaguar”,whichcouldbeacatoracar.

Thequerystringmayrefertoahighlypolarizedissue,involvinggroupsthatarenotlikelytolinktooneanother,e.g.“abortion”.HITSAlgorithmIneachoftheseexamples,therelevantpagescanbenaturallygroupedintoseveralclusters,alsocalledcommunities.Thesmallerclusters(orcommunities),whicharealsorepresentedbybipartitesubgraphsasthatinFig.7.9,canbefoundbycomputingnon-principaleigenvectors.Non-principaleigenvectorsarecalculatedinasimilarwaytopoweriterationusingmethodssuchasorthogonaliterationandQRiteration.RelationshipswithCo-CitationandBibliographicCouplingAuthoritypagesandhubpageshavetheirmatchesinthebibliometriccitationcontext.Anauthoritypageislikeaninfluentialresearchpaper(publication)whichiscitedbymanysubsequentpapers.Ahubpageislikeasurveypaperwhichcitesmanyotherpapers(includingthoseinfluentialpapers).Thisshowsthattheauthoritymatrix(LTL)ofHITSisinfactthecocitationmatrixCintheWebcontext.RelationshipswithCo-CitationandBibliographicCouplingrecallthatbibliographiccouplingoftwopagesiandj,denotedbyBij,iscomputedaswhichshowsthatthehubmatrix(LLT)ofHITSisthebibliographiccouplingmatrixBintheWebcontext.StrengthsandWeaknessesofHITSThemainstrengthofHITSisitsabilitytorankpagesaccordingtothequerytopic,whichmaybeabletoprovidemorerelevantauthorityandhubpages.Therankingmayalsobecombinedwithinformationretrievalbasedrankings.HITShasseveraldisadvantages:

1.

Itdoesnothavetheanti-spamcapabilityofPageRank.2.AnotherproblemofHITSistopicdrift.

3.Thequerytimeevaluationisalsoamajordrawback.StrengthsandWeaknessesofHITSOvertheyears,manyresearcherstriedtodealwiththeseproblems….LempelandMoranproposedSALSA,astochasticalgorithmforlinkstructureanalysis.SALSAcombinessomefeaturesofbothPageRankandHITStoimprovetheauthorityandhubcomputation.ItcaststheproblemastwoMarkovchainsStrengthsandWeaknessesofHITSBharatandHenzingerproposedasimple

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論